Metacognitive Illusions for Auditory Information: Effects on Monitoring and Control

Article excerpt

Prior work has demonstrated that the perceptual features of visually presented stimuli can have a strong influence on predictions of memory performance, even when those features are unrelated to recall (Rhodes & Castel, 2008). The present study examined whether this finding would hold in an auditory domain and influence study-choice allocation. Participants listened to words that varied in volume, made judgments of learning (JOLs) for each item, and were then administered a test of free recall. In Experiment 1, we showed that JOLs were influenced by volume, with loud words given higher JOLs than quiet words, and that volume had no influence on recall, illustrating a metacognitive illusion based on auditory information. In Experiment 2, we extended these findings to control processes and showed that participants were more likely to choose to restudy quiet words than loud words. These findings indicate that highly accessible auditory information is integrated into JOLs and restudy choices, even when this information does not influence actual memory performance.

A great deal of research has examined the manner in which participants make predictions of memory performance (for reviews, see Koriat, 2007; Metcalfe, 2000). The most common research method has been to solicit judgments of learning (JOLs) either immediately after the presentation of an item or following a delay. JOLs are often accurate, but a number of important discrepancies have been observed between actual and predicted memory performance (see, e.g., Begg, Duft, Lalonde, Melnick, & Sanvito, 1989; Benjamin, Bjork, & Schwartz, 1998; Castel, McCabe, & Roediger, 2007; Koriat & Bjork, 2005; Mazzoni & Nelson, 1995; Rhodes & Castel, 2008). Such discrepancies provide some indication of the bases for JOLs. For example, Benjamin et al. recorded participants' latency for answering general knowledge questions. Immediately after providing an answer, participants predicted the likelihood that they would later remember that answer when given the opportunity for recall. The results showed that the answers that were retrieved most quickly were given the highest JOLs. However, the opposite pattern was apparent for recall; it was the items with the longest latencies that were most likely to be recalled (but see Koriat, 2008). Such data suggest that JOLs were based on the ease with which answers were retrieved, rather than on other, more diagnostic bases for predicting recall.

The present study is likewise concerned with cases in which participants base JOLs on cues that are not diagnostic of subsequent memory performance. In particular, we focused on a class of cues that have not been thoroughly examined in previous research-namely, manipulations of the perceptual qualities of to-be-remembered stimuli. Several lines of work suggest that the perceptual properties of information, such as its clarity, can have a strong influence on memory (for reviews, see Jacoby, Kelley, & Dywan, 1989; Kelley & Rhodes, 2002; Schwarz, 2004). For example, perceptually clear stimuli (see, e.g., Busey, Tunnicliff, Loftus, & Loftus, 2000; Whittlesea, Jacoby, & Girard, 1990) are more likely to be regarded as having been previously studied than are stimuli that have been perceptually degraded. In addition, manipulations that enhance the ease with which an item is identified or processed often increase the probability that the item will be judged as having been previously encountered (see, e.g., Jacoby & Dallas, 1981; Rhodes & Kelley, 2003).

Very few studies have examined whether JOLs are likewise influenced by variations in perceptual information (Busey et al., 2000; Rhodes & Castel, 2008; see also Korenman & Peynircioðlu, 2004). Busey et al. had participants study faces at different levels of luminance, so that the faces were studied in high to low levels of contrast. Following the presentation of each face, the participants predicted whether they would be able to recognize the face on a later test. …