Population Forecasts for Bangladesh, Using a Bayesian Methodology

Article excerpt

ABSTRACT

Population projection for many developing countries could be quite a challenging task for the demographers mostly due to lack of availability of enough reliable data. The objective of this paper is to present an overview of the existing methods for population forecasting and to propose an alternative based on the Bayesian statistics, combining the formality of inference. The analysis has been made using Markov Chain Monte Carlo (MCMC) technique for Bayesian methodology available with the software WinBUGS. Convergence diagnostic techniques available with the WinBUGS software have been applied to ensure the convergence of the chains necessary for the implementation of MCMC. The Bayesian approach allows for the use of observed data and expert judgements by means of appropriate priors, and a more realistic population forecasts, along with associated uncertainty, has been possible.

Key words: Cohort component Method, Monte Carlo error; Gompertz model; Highest posterior density; Logistic model; Markov Chain Monte Carlo; Non-linear regression model; Population projection; WinBUGS

(ProQuest: ... denotes formulae omitted.)

INTRODUCTION

A widely-used method of forecasting the age- and sex-specific population for future years, in which the initial population is stratified by age and sex and projections, is generated by application of survival ratios and birth rates, followed by an additive adjustment for net migration. To get this information, the behaviour of the related variables is analyzed based on the past data by statisticians, and then inferences are drawn from the analysis to make forecasts of the desired variable. At present, there exist two major paradigms in statistics, namely conventional (frequentist) and Bayesian statistics for the purpose of data analysis. Use of Bayesian methodology in the field of data analysis is comparatively new and has found massive support in the last two decades from the experts belonging to various disciplines. Probably, the main reason behind the increasing support is its flexibility and generality that allows it to deal with the complex situations. Besides, Bayesian method is typically preferred over classical approach in parameter estimation because of the intractable form of the likelihood function (1).

There are a number of methodologies used for population projections. One of the most popular methods is cohort component method which is based on the estimates about the future levels of fertility, mortality, sex composition, migration, and other parameters. Many studies have examined the relative performance of simple mathematical models, extrapolation based on time-series and cohort-component models of population forecasting. Most have found that constant growth mathematical models or standard time-series models of population growth are as least accurate as cohor component models (2-4).

The present study is not intended to assess the relative accuracy of various projection models. Rather, it only aims to investigate the usefulness of cohort component method in making the population projection for Bangladesh, using Bayesian approach. Bayesian analysis has been applied in cohort component model for providing a neat and transparent way of estimation. It provides probabilistic point estimates of the parameters, along with the highest posterior density interval (HPD) or Bayesian credible interval. Bayesian credible interval is a measure of uncertainty, and it is based on statistical theory and data on error distributions that provide an explicit estimate of the probability that a given range will contain the future population. This approach develops statistical prediction intervals to accompany population forecasts (5-7). Prediction intervals will provide extremely valuable information to data-users and will improve the quality of decisionmaking, based on population forecasts.

LITERATURE REVIEW

A cohort component strategy of population projection is based on the logic of a general population- component methodology which examines separately the components of population change, fertility, mortality, and net migration. …