The Princeton Guide to Ecology

By Simon A. Levin | Go to book overview
Save to active project


Jonathan B. Losos

Autecology refers to how a single species interacts with the environment; its counterpart is synecology, which refers to how multiple species interact with each other. This latter term is mostly congruent with the field of community ecology, the subject of part III of this volume.

Integral to any discussion of autecology is the concept of the niche. This concept has a long and checkered history in the field of ecology, and the term itself has taken on different meanings through time (chapter I.1). In the most general sense, however, we may think of the niche of a population as the way members of that population interact with their environment, both biotic and abiotic. In other words, the term “niche” refers to where organisms live and what they do there.

The first step in considering how organisms interact with their environment is investigating how the specific phenotypic characteristics of members of a population allow them to exist in a particular environment. The environment poses a wide variety of challenges to organisms: for example, they must be able to obtain and retain enough water, withstand high or low temperatures, and obtain enough nutrients to survive. More than a century of research has revealed that species, and even populations of species, are often finely tuned to the specific conditions in the environment in which they live. In recent years, increasingly sophisticated approaches and instrumentation have allowed an exquisitely detailed understanding of the physiological basis of organismal function (chapters I.2–I.4).

Animals—and, in some sense, fast-growing plants— also can influence the way they interact with their environment through behavioral means. For example, animals can choose the habitat in which they occur and thus can determine, to some extent, the environment they experience throughout their lives (chapter I.5). Many organisms move from their birth site at a particular stage in life; although for plants and some animals, dispersal is passive, other species actively choose where to settle (chapter I.6).

Behavior, of course, is a key component of how most animals interact with their environment. Almost all aspects of the natural history of animals have a behavior component. In part I, we consider foraging (chapter I.7) and social behavior (chapter I.8). Other topics are included in parts II and VI of this volume.

Most plants have relatively little ability to determine the environmental conditions they experience. But plants often have another option available—they frequently exhibit substantial phenotypic plasticity, which allows a plant to alter its phenotype in an advantageous way to be better suited to its environment. Scientists have long appreciated this ability in plants, and zoologists have come to realize relatively recently that many animal species exhibit adaptive phenotypic plasticity as well (chapter I.9).

Organisms adapt in yet another way, by molding their life cycle—what is termed “life history”—to the particular environment in which they live (chapter I.10). Thus, species in environments in which resources are abundant and threats are common may have short generation times and early reproduction. Conversely, in environments in which resources are more scarce but threats are not as severe, a more successful strategy may be to defer reproduction and to invest in becoming better competitors for resources, delaying reproduction and ultimately producing fewer, but better provisioned, offspring.

No species occurs everywhere in the world. The behavior and physiological capabilities of a species determine where a species can and cannot occur. In the last few years, advances in remote sensing technology have provided the capability to visualize the distribution of environmental conditions with great precision over large spatial scales (chapter I.11). Combined with records of species occurrences and, ideally, an understanding of species’ physiological capabilities, these geographic information systems approaches have opened new vistas for understanding how and why species occur where they do; these approaches are also of great importance in predicting how species will respond to rapidly changing environmental conditions


Notes for this page

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Cite this page

Cited page

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited page

Bookmark this page
The Princeton Guide to Ecology
Table of contents

Table of contents



Text size Smaller Larger
Search within

Search within this book

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen
/ 810

matching results for page

Cited passage

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?