Cited page

Citations are available only to our active members. Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

X X

Cited page

Display options
Reset

The Princeton Guide to Ecology

By: Simon A. Levin | Book details

Contents
Look up
Saved work (0)

matching results for page

Page 14
Why can't I print more than one page at a time?
While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.

I.2
Physiological Ecology: Animals
Martin Wikelski
OUTLINE
1. Guiding concept: Trade-offs
2. Guiding concept: Performance as integrative measure of individual fitness
3. Process I: Acquisition of environmental information
4. Process II: Internal communication and regulation of physiological function
5. Process III: Energy expenditure as one central hub for trade-offs
6. Process IV: Key innovations
7. Process V: Self-defense: Immunoecology
8. Application: Conservation physiology
9. Future challenges

Physiological ecologists study how animals live and function within environments that are constantly changing. Key guiding concepts in physiological ecology are that (1) individual animals are subject to trade-offs such that all (physiological) actions cannot be performed maximally at the same time. Trade-offs underlie the fact that “a jack of all physiological trades is a master of none,” which in turn is the basis of the generalist-specialist continuum that brings about much of the niche differentiation in ecology. (2) A second guiding concept is that whole-organism performance provides an integrative measure of individual success in life. Quantifying individual performance allows physiological ecologists to assess the integration of traits within an organism and to determine how natural selection orchestrates not just one but all characteristics of an organism at the same time. Whereas in the past, physiological ecologists have also often studied animals in laboratory situations, technological advances now allow researchers to “go wild” and address individual physiological functions in the very environment where such functions have evolved. The importance of studying animal function in the wild cannot be overestimated because many organismal tradeoffs are expressed only when food is scarce or predators are abundant.


GLOSSARY

constraints. These can absolutely limit certain actions of an organism. Even if all efforts in a trade-off scenario are devoted toward a particular action, this action is not sufficient to satisfy an organism’s current needs.

energy. In biology, energy, which is essential for life, is gathered from the breaking of chemical bonds during metabolic processes. Energy is often stored by cells in the form of substances such as carbohydrate molecules (including sugars) and lipids, which release energy when reacting with oxygen.

hormones. These substances are chemical messengers that carry information from one part of the organism (e.g., the brain) to another (e.g., the gonads) often via the blood transport system. Hormones bind to receptors on target cells and thus regulate the function of their targets. Various factors influence the effects of a hormone, including its pattern of secretion, transport processes, the response of the receiving tissue, and the speed with which the hormone is degraded.

metabolic rate. Energy expenditure per unit time. Metabolic rate is normally expressed in terms of rate of heat production (kilojoules per time).

performance. This refers to whole-organism performance capabilities (e.g., how fast an organism can sprint) that are determined by physiological traits (e.g., composition of muscle fibers).

trade-offs. These attributes refer to the loss of one quality or aspect of something in return for gaining another quality or aspect.

Physiological ecology occupies a central role in the biological sciences and has a long tradition of integrating other biological disciplines. Physiological systems provide the interface between genomics at the lowest mechanistic level to organismal life history and evolution at the highest level of biological integration.

-14-

Select text to:

Select text to:

  • Highlight
  • Cite a passage
  • Look up a word
Learn more Close
Loading One moment ...
of 810
Highlight
Select color
Change color
Delete highlight
Cite this passage
Cite this highlight
View citation

Are you sure you want to delete this highlight?