Cited page

Citations are available only to our active members. Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

X X

Cited page

Display options
Reset

The Princeton Guide to Ecology

By: Simon A. Levin | Book details

Contents
Look up
Saved work (0)

matching results for page

Page 177
Why can't I print more than one page at a time?
While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.

II.4
Metapopulations and Spatial
Population Processes
Ilkka Hanski
OUTLINE
1. Metapopulation patterns and processes
2. Long-term viability of metapopulations
3. Metapopulations in changing environments
4. Evolution in metapopulations
5. Spatial dynamics in nonpatchy environments
6. Metapopulations, spatial population processes, and conservation
7. Conclusion

Most landscapes are complex mosaics of many kinds of habitat. From the viewpoint of a particular species, only some habitat types, often called “suitable habitat,” provide the necessary resources for population growth. The remaining landscape, often called the (landscape) matrix, can only be traversed by dispersing individuals. Often the suitable habitat occurs in discrete patches, an example of which is a woodland in the midst of cultivated fields—for forest species, the woodland is like an island in the sea. The woodland may be occupied by a local population of a forest species, but many such patches are likely to be temporarily unoccupied because the population became extinct in the past and a new one has not yet been established. At the landscape level, woodlands and other comparable habitat patches comprise networks in which local populations living in individual patches are connected to each other by dispersing individuals. A set of local populations inhabiting a patch network is called a metapopulation. In other cases, the habitat does not consist of discrete patches, but even then, habitat quality is likely to vary from one place to another. Habitat heterogeneity tends to be reflected in a more or less fragmented population structure, and such spatially structured populations may be called metapopulations. Metapopulation biology addresses the ecological, genetic, and evolutionary processes that occur in metapopulations. For instance, in a highly fragmented landscape, all local populations may be so small that they all have a high risk of extinction, yet the metapopulation may persist if new local populations are established by dispersing individuals fast enough to compensate for extinctions. Metapopulation structure and the extinction–colonization dynamics may greatly influence the maintenance of genetic diversity and the course of evolutionary changes. Metapopulation processes play a role in the dynamics of most species because most landscapes are spatially more or less heterogeneous, and many comprise networks of discrete habitat patches. Human land use tends to increase fragmentation of natural habitats, and hence, metapopulation processes are particularly consequential in many human-dominated landscapes.


GLOSSARY

connectivity. An individual habitat patch in a patch network and a local population in a metapopulation are linked to other local populations, if any exist, via dispersal of individuals. Connectivity measures the expected rate of dispersal to a particular patch or population from the surrounding populations.

dispersal. Movement of individuals among local populations in a metapopulation is dispersal. Migration is often used as a synonym of dispersal.

extinction–colonization dynamics. Local populations in a metapopulation may go extinct for many reasons, especially when the populations are small. New local populations may become established in currently unoccupied habitat patches. Local extinction and recolonization are called turnover events.

extinction debt. If the environment becomes less favorable for the persistence of metapopulations through, e.g., habitat loss and fragmentation, species’ metapopulations start to decline. For some metapopulations, the new environment may be below the extinction threshold. Extinction debt is defined as the number of species for which the

-177-

Select text to:

Select text to:

  • Highlight
  • Cite a passage
  • Look up a word
Learn more Close
Loading One moment ...
of 810
Highlight
Select color
Change color
Delete highlight
Cite this passage
Cite this highlight
View citation

Are you sure you want to delete this highlight?