Competition, Neutrality,
and Community Organization
| 1. | Introduction |
| 2. | Species abundance |
| 3. | Species co-occurrence |
| 4. | Body size |
| 5. | Evolution and competition |
| 6. | Reconciling historical and mechanistic interpretations |
Competition has long been thought to play a foremost role in the organization of ecological communities, and this has been a core concept in the building of niche theory. However, many observed patterns in nature are difficult to reconcile with the predictions of niche theory, and they reflect the historical nature of community assembly. The neutral theory of biodiversity has recently been developed to provide an alternative interpretation of patterns in community organization in the absence of competitive difference among coexisting species.
Hutchinsonian ratio. Body size ratio of the larger species over the smaller species in a pair of species; niche theory predicts that co-occurring species should have larger body size ratio than expected by chance
neutrality. Assumption of equivalence in individuals’ prospects of reproduction or of death, irrespective of the species they belong to
phylogenetic overdispersion and clustering. The tendency of species to be on average more or less (respectively) evolutionarily related in a sample than in the larger species pool
species abundance distribution Φ (n). Number of species with exactly n individuals in a sample
Ecological communities are complex assemblages of organisms shaped by environmental constraints and interacting through a variety of ecological processes but also reflecting historical contingencies. Understanding these processes has been a central goal of animal and plant ecology for almost a century. Early on, researchers put forward the idea that communities were tightly organized associations of species, with sharp boundaries, and that they were amenable to classification, just as species can be classified taxonomically. This idea may be related to the famous work of the Russian experimentalist Georgyi Gause. He and others developed research projects on simple species assemblages easily amenable to experiments, such as yeast and paramecia (Gause, 1934). Because these systems included only a few species, typically two, and controlled environmental conditions, it was possible to find the theoretical conditions under which species may coexist stably in association. Nicely, these experiments could be reframed into the mathematical theory developed by the Italian mathematician Vito Volterra (1931). The major finding of both theory and experiments was that, of two species with identical ecological requirements and competing for limited resources in a stable environment, one will eventually exclude the other. This result later developed into a fundamental principle, called the principle of competitive exclusion.
The view that ecological communities should be the result of tight species association did not remain uncriticized over these years. In 1926, the plant ecologist and taxonomist Henry Gleason, for instance, suggested that species do not, as a rule, live their lives in tight associations, a view that was echoed in 1935 by one of the most prominent British ecologists of the first half
-264-
Questia, a part of Gale, Cengage Learning. www.questia.com
Publication information:
Book title: The Princeton Guide to Ecology.
Contributors: Simon A. Levin - Editor.
Publisher: Princeton University Press.
Place of publication: Princeton, NJ.
Publication year: 2012.
Page number: 264.
This material is protected by copyright and, with the exception of fair use, may not be further copied, distributed or transmitted in any form or by any means.
- Georgia
- Arial
- Times New Roman
- Verdana
- Courier/monospaced
Reset