The Princeton Guide to Ecology

By Simon A. Levin | Go to book overview
Save to active project

III.7
The Structure and Stability
of Food Webs
Kevin McCann
OUTLINE
1. Introduction
2. Diversity and stability: The early years
3. Robert May and the limits to diversity
4. Diversity and food web structure
5. Structure, variability, and stability
6. Future directions: Food webs across space and time

The role of diversity and structural complexity in the dynamics and stability of ecosystems is a longstanding and unresolved issue in ecology. Here, I review the history of this major ecological problem and highlight three relatively distinct historical periods in thought. The first period was one of mostly intuitive belief that suggests nature’s diversity gives rise to stability. This period was followed by a second that arose with the rigorous application of mathematics and dynamic systems theory that, more or less, puts this intuitive belief to the test. This theoretical result ultimately pushed ecologists to look beyond diversity to understand the dynamics of these complex natural entities. In response to this theory, a group of intrepid empirical ecologists began to map real food webs and so begin the search for patterns in food web structure. More recently, conceptual developments in ecology have begun to consider how specific food web modules (i.e., common natural food web structures) and variability in space and time govern the stability of ecological systems. The emerging answer appears to suggest that the variability itself may ultimately be responsible for the persistence of these enormously complex entities.


GLOSSARY

food web compartment/channel. A highly and strongly connected set of species (i.e., subweb) that connect with much lower frequency and much lower strength to other species in the larger web.

food web connectance (C). Given S species in a food web, then connectance is the number of actual links or interactions (L) divided by the maximum possible links (S2), so C=L/S2.

food web modules/motifs. All possible topologies of sub-food webs of n-species; thus, a specific module or motif consists of a given two-species interaction (e.g., predator–prey, mutualism), three-species interaction (food chain, omnivory, etc.).

food web or ecological network. A set of species that are connected to one another via trophic interactions (i.e., fluxes of matter and energy).

food web pathways. A directed set of interactions from any one species to another (e.g., a resource to consumer to a predator of the consumer).

food web structure. At its most general level, nonrandom patterns in the food web topology, interaction strengths, densities, and other ecological traits (e.g., age structure). As one example, some authors have argued that omnivory is ubiquitous and so is found in real food webs more than expected in randomly constructed food web networks. Network analysts use “motifs” to ask if there is a specific topology that is significantly overrepresented relative to random networks.

interaction strength (IS). The dynamic influence of one species on another. This is measured in a variety of metrics, but some standard measures have emerged. (1) Direct metrics: these measures estimate the direct influence of one species on another. Energy or biomass flux has been frequently employed (e.g., the IS of predator on prey is equivalent to the amount of biomass consumed by the predator). Another similar measure is the elements of the Jacobian matrix that assesses the instantaneous rate of change of one species with respect to a very small change in density of another species. (2) Indirect metrics: often employed in the field, these metrics assess the change of

-305-

Notes for this page

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Notes
Cite this page

Cited page

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited page

Bookmark this page
The Princeton Guide to Ecology
Table of contents

Table of contents

Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this book

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen
/ 810

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?