The Princeton Guide to Ecology

By Simon A. Levin | Go to book overview

III.13
The Marine Carbon
Paul Falkowski
OUTLINE
1. The two carbon cycles
2. Chemoautotrophy
3. The evolution of photoautotrophy
4. Selective pressure in the evolution of oxygenic photosynthesis
5. Primary production
6. Who are the photoautotrophs?
7. Carbon burial
8. Carbon isotope fractionation in organic matter and carbonates
9. Concluding remarks

The system of scholastic disputations encouraged in
the Universities of the middle ages had unfortu-
nately trained men to habits of indefinite argu-
mentation, and they often preferred absurd and
extravagant propositions, because greater skill was
required to maintain them; the end and object of
such intellectual combats being victory and not the
truth.

—Charles Lyell, Principles of Geology, 1830

Approximately 50% of all the primary production on Earth occurs in the oceans, virtually all by microscopic, singlecelled organisms that drift with the currents, the phytoplankton. On ecological time scales of days to years, the vast majority of the organic matter produced by phytoplankton is consumed by grazers such that the turnover time of marine organic carbon is on the order of 1 week, compared with over a decade for terrestrial plant ecosystems. On geological time scales of millions of years, however, a small fraction of the carbon fixed by phytoplankton organisms is buried in marine sediments, thereby both giving rise to oxygen in Earth’s atmosphere and providing fossil fuel in the form of petroleum and natural gas. In this chapter, we examine the factors controlling the marine carbon cycle and its role in the ecology and biogeochemistry of Earth.


GLOSSARY

acid-base reactions. A class of (bio)chemical reactions that involve the transfer of protons without electrons.

chemoautotrophy. A mode of nutrition by which an organism can reduce inorganic carbon to organic matter in the absence of light using preformed bond energy contained in other molecules.

isotopic record of carbon. The changes in the ratio of 13C to12C over geological time in marine carbonates or in organic matter in sediments or sedimentary rocks.

net primary production. The organic carbon that is produced by photosynthetic organisms and becomes available for other trophic levels in an ecosystem.

photoautotrophy. A mode of nutrition by which an organism can reduce inorganic carbon to organic matter using light energy.

phytoplankton. Microscopic, mostly single-celled photosynthetic organisms that drift with the currents.

redox reactions. A class of (bio)chemical reactions that involve the transfer of electrons with or without protons (i.e., hydrogen atoms). Addition of electrons or hydrogen atoms to a molecule is called “reduction”; removal of electrons or hydrogen atoms from a molecule is called “oxidation.” “Redox” is a contraction of the terms reduction and oxidation.


1. THE TWO CARBON CYCLES

All life on Earth is critically dependent on the fluxes of six elements: H, C, N, O, S, and P. Of these, the flux of C is unique. Not only is C used to make the substrates of key biological polymers, such as lipids, carbohydrates, proteins, and nucleic acids, the oxidation and reduction of C provide the major conduit of energy supply for life itself. The biological carbon cycle is based on electron transfer (i.e., redox) reactions in which the formation and utilization of the bond energy of C–H and, to a lesser extent, C–C molecules provide

-358-

Notes for this page

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this book

This book has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this book

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this page

Cited page

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited page

Bookmark this page
The Princeton Guide to Ecology
Table of contents

Table of contents

Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this book

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen
/ 810

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.