Cretaceous period

The Columbia Encyclopedia, 6th ed.

Cretaceous period

Cretaceous period (krĬtā´shəs), third and last period of the Mesozoic era of geologic time (see Geologic Timescale, table), lasting from approximately 144 to 65 million years ago. The Cretaceous was marked, in both North America and Europe, by extensive submergences of the continents. Changes both in the earth's surface and in its flora and fauna brought the Mesozoic to a close.

Historical Geology of the Period

The Lower Cretaceous Period

At the beginning of the Lower Cretaceous in North America, the Mexican Sea of the late Jurassic period spread over Texas, Oklahoma, New Mexico, and parts of Arizona, Kansas, and Colorado. Deposits from this inland sea, known as the Comanchean Sea, were chiefly limestone (up to 1,500 ft/457 m thick in Texas) but some continental sediments (i.e., sandstone, shale, and conglomerate) mark the reemergence of land, which brought the Lower Cretaceous to a close. The Comanchean Sea was probably separated by a land barrier from contemporaneous seas in the California areas, where 26,000 ft (7,925 m) of Shastan shales, with sandstone and thin limestone, were laid down. The sediments were derived by rapid erosion from the recently elevated Sierra Nevada and Klamath mts. In Montana, Alberta, and British Columbia the Kootenai deposits of sandstone and sandy shale, which contain workable deposits of good coal, were formed; along the Atlantic coast the unconsolidated sandy clay, gravel, and sand of the Potomac series were deposited.

The Lower Cretaceous opened in NW Europe with the deposition of a continental and freshwater formation, the Wealden sand and clay, best displayed in England. The sea, meanwhile, expanded from the Mediterranean, finally overlaying successive Wealden strata with limestone. There was at the same time an extensive sea in N Europe. At the close of the Lower Cretaceous, there was some recession of the seas; by the Upper Cretaceous, the great transgression of seas submerged lands that had been open since the Paleozoic.

The Upper Cretaceous Period

The Upper Cretaceous opened in W North America with the deposition of continental sands (now the Dakota sandstone), which, however, were covered by the ensuing rise of the Colorado Sea. The Colorado Sea was the greatest of the North American Mesozoic seas and extended all the way from Mexico up into the Arctic, covering most of central North America. The Colorado deposits were composed chiefly of shales, limestone, and some chalk in Kansas and South Dakota. Slight shifting of the sea was followed by the deposition of the Montana shale and sandstone and then by withdrawal of the sea. Near the end of the Upper Cretaceous, conditions in the west were similar to those of the Carboniferous period in other regions; swamps and bogs were formed that later became valuable deposits of coal.

At the close of the Cretaceous the Laramide revolution occurred—at least two different epochs of mountain building and one of relative quiet. In this disturbance the Rockies and the E Andes were first elevated, and there were extensive flows of lava. The Appalachians, which had been reduced almost to base level by erosion, were rejuvenated, and the seas retreated from all parts of the continent. The intermittent character of the Laramide disturbance makes difficult the demarcation of the Mesozoic and the succeeding Cenozoic era.

The striking feature of the European Upper Cretaceous are great chalk deposits from small carbonate-bearing marine algae and calcareous fauna, now exposed in the cliffs of the English Channel. In India the late Upper Cretaceous was marked by an overflow of lava in the Deccan plateau. The area covered by igneous rocks dating from this period now comprises over 200,000 sq mi (518,000 sq km) and was formerly much larger, having been reduced by erosion. Near Mumbai the formation is 10,000 ft (3,000 m) thick.

Movement of the Continents

During the Cretaceous period the massive continents of Gondwanaland and Laurasia continued to separate. South America and Africa had separated, with the consequent widening of the S Atlantic. The N Atlantic continued to expand, although it appears that Europe, Greenland, and North America were still connected. Madagascar had separated from Africa, while India was still drifting northward toward Asia. The Tethys Sea was disappearing as Africa moved north toward Eurasia. Antarctica and Australia had yet to separate.

Evolution of Plant and Animal Life

The Lower Cretaceous is characterized by a revolution in the plant life, with the sudden appearance of flowering plants (angiosperms) such as the ancestors of the beech, fig, magnolia, and sassafras. By the end of the Cretaceous such plants became dominant. Willow, elm, grape, laurel, birch, oak, and maple also made their appearance, along with grass and the sequoias of California. Closely associated with the angiosperms were insects, including a form of the dragonfly, and most were similar to today's insects. This prepared the way for the increase in mammals in the late Cenozoic. The marine invertebrates of the Cretaceous included nautiluses, barnacles, lobsters, crabs, sea urchins, ammonites, and foraminifers. Reptiles reached their zenith, including the dinosaurs Triceratops, Tyrannosaurus, Stegosaurus, Apatosaurus (Brontosaurus), and Iguanodon, and ranged from herbivores to carnivores. Flying reptiles such as the pterosaurs were highly developed, while in the sea there were ichthyosaurs, plesiosaurs, and mosasaurs. Other reptiles living in this period include crocodiles and giant turtles; snakes and lizards made their first appearance at this time. True mammals, which had already appeared in the Triassic period, were rare, as the Cretaceous reptiles dominated.

The climate of the Cretaceous was apparently fairly mild and uniform, but it is possible that toward the end of the period some variant zones of climate had appeared, making the overall climate cooler. Such changes, along with changes in both the earth's surface and its flora and fauna, brought the Mesozoic to a close.

By the end of the Cretaceous, about 75% of all species, including marine, freshwater, and terrestrial organisms, became extinct. The rather abrupt disappearance of Cretaceous life remains a mystery; similar mass extinctions have occurred at other periods in the earth's history. Theories for the extinctions have included one or a mixture of the following: drastic cooling of the globe, retreat of the seas, breakup of the continents (see continental drift), biological disease, reversals of the earth's magnetic field, or a change in atmospheric carbon dioxide and oxygen. However, the most widely accepted theory was introduced in 1980 by Luis and Walter Alvarez and colleagues at the Univ. of California. Alvarez proposed that the earth was struck by an asteroid or comet about 6 mi (10 km) in diameter around 65 million years ago. Such an impact (or collection of impacts) would spread dust into the atmosphere, suppressing photosynthesis and changing the food chain. Evidence for an impact includes an anomalous iridium layer, typical of meteorites, and some probable impact craters dated to the late Cretaceous. Other scientists have proposed that the cause of the final Cretaceous extinction was the huge volcanic eruptions that created the lava flows of the Deccan Traps in what is now India. One model has put these two theories together, hypothesizing that shock waves from the impact of a large asteroid moved through the earth, shaking the earth's crust and triggering or intensifying the volcanic events. Another suggests that the lava flows set off a chain of events that killed off much marine life a couple hundred thousand years before the impact extinguished the dinosaurs.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Cretaceous period
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.