Saturn (in astronomy)

The Columbia Encyclopedia, 6th ed.

Saturn (in astronomy)

Saturn, in astronomy, 6th planet from the sun.

Astronomical and Physical Characteristics of Saturn

Saturn's orbit lies between those of Jupiter and Uranus; its mean distance from the sun is c.886 million mi (1.43 billion km), almost twice that of Jupiter, and its period of revolution is about 291/2 years. Saturn appears in the sky as a yellow, starlike object of the first magnitude. When viewed through a telescope, it is seen as a golden sphere, crossed by a series of lightly colored bands parallel to the equator.

Saturn, like the other Jovian planets (Jupiter, Uranus, and Neptune), is covered with a thick atmosphere composed mainly of hydrogen and helium, with some methane and ammonia; its temperature is believed to be about -270°F (-168°C), suggesting that the ammonia is in the form of ice crystals that constitute the clouds. Like Jupiter's interior, Saturn's consists of a rocky core, a liquid metallic hydrogen layer, and a molecular hydrogen layer. Traces of various ices have also been detected. The wind blows at high speeds—reaching velocities of 1,100 mph (1,770 kph)—across Saturn. The strongest winds are found near the equator and blow mostly in an easterly direction. At higher latitudes, the velocity decreases uniformly and the winds counterflow east and west. Because no permanent markings on the planet are visible, the planet's exact period of rotation has not been determined. However, the period of each atmospheric band varies from 10 hr 14 min at the equator to about 10 hr 38 min at higher latitudes. This rapid rotation causes the largest polar flattening among the planets (over 10%). Saturn is the second largest planet in the solar system; its equatorial diameter is c.75,000 mi (120,000 km), and its volume is more than 700 times the volume of the earth. Its mass is about 95 times that of the earth, making Saturn the only planet in the solar system with a density less than that of water. Saturn has been encountered by four space probe missions: Pioneer 11 (1979), Voyager 1 (1980), Voyager 2 (1981), and Cassini and Huygens (2004). Among the discoveries made by the Voyager probes was a magnetosphere (a region of charged particles consisting primarily of electrons, protons, and heavy ions captured partly from the atmosphere of the satellite Titan) that encloses 13 of Saturn's satellites and its ring system. Huygens landed on Saturn's moon Titan in 2005 and returned photographs of its surface.

The Ring System

Saturn's most remarkable feature is the system of thin, concentric rings lying in the plane of its equator. Although first observed by Galileo in 1610, it was not until 1656 that the rings were correctly interpreted by Christiaan Huygens, who did not reveal his findings about their phases and changes in shape until his treatise Systema Saturnium was published in 1659. Saturn's rings were believed to be unique until 1977, when very faint rings were found around Uranus; shortly thereafter faint rings were also detected around Jupiter and Neptune.

Although the main ring system is almost 167,770 mi (270,000 km) in diameter, it is only some 330 ft (100 m) thick. From earth, this system appears to consist mainly of two bright outer rings, denoted A and B (lettered from the outermost), separated by a dark rift—discovered by the Italian-French astronomer Gian Domenico Cassini—known as Cassini's division, plus a third, faint inner crepe ring (denoted C). The Encke Division, or Encke Gap, which splits the A ring, is named after the German astronomer Johann Franz Encke, who discovered it in 1837. In 1859 the Scottish physicist James Clerk Maxwell showed that the main rings must consist of countless tiny particles each orbiting the planet in accordance with the laws of gravitation. In the 1980s pictures from the Voyager probes showed four additional rings. The exceedingly faint D ring lies closest to the planet. The faint F Ring is a narrow feature just outside the A Ring. Beyond that are two far fainter rings named G and E. In 2009 an enormous but faint ring consisting of tiny dust particles was discovered extending from 3.7 to 7.4 million mi (6 to 12 million km) away from Saturn. Lying at a 27° angle to the main rings, this ring has a retrograde orbit and is believed to have originated in material ejected from the moon Phoebe by small impacts. When edgewise to the earth Saturn's main rings appear as a nearly imperceptible ribbon of light across the planet; this occurs twice during the 291/2-year period of revolution. Twice during each orbit the rings reach a maximum inclination to the line of sight, once when they are visible from above and once when visible from below.

The Voyager 1 (1980) and 2 (1981) space probes revealed incredible new detail as they passed within 78,000 mi (126,000 km) and 63,000 mi (101,000 km) of Saturn, respectively. They recorded hundreds of tiny rings that are grouped into the seven major rings. The three brightest rings (A, B, and C) dissolved into more than 1,000 narrow ringlets, 100 of which are in the Cassini division. The outer F ring was found to contain braids, knots, and strands, possibly caused by nearby moons that shepherd it, that is, limit the extent of a planetary ring through gravitational forces. The main rings are believed to have been formed mainly from larger satellites that were shattered by the impact of comets and meteoroids; geyserlike eruptions on Enceladus contribute material to the E ring. The Cassini revealed that the rings consist mainly of water ice.

The Satellite System

Saturn has 61 confirmed natural satellites, 52 of which are named. Because the increasing number of satellites makes it difficult to continue to name them after Greek Titans, a scheme was adopted for the outer satellites. These are now named after the giants of other cultures: Inuit, Norse, and Gallic. The satellites may be divided into nine groups for convenience. In the order of their distance from Saturn, the groups are shepherd (satellites whose orbit is within or just beyond Saturn's ring system), co-orbital (two satellites that share the same orbit and trade positions within it on a regular basis), inner large (large satellites within the E ring), Alkyonide (small satellites within the inner large group), Trojan (satellites that are co-orbital at Lagrangian points), outer large (large satellites beyond the E ring), and Inuit, Norse, and Gallic (each a group of outer satellites that have similar orbits).

Five of the six confirmed shepherd satellites, Pan, Daphnis, Atlas, Prometheus, and Pandora, are named. The co-orbital group comprises Epimetheus and Janus, but the shepherds Prometheus and Pandora also share an orbit. The inner large group comprises four satellites, Mimas, Enceladus, Tethys, and Dione; the three Alkyonides (Methone, Anthe, and Pallene) have orbits between Mimas and Enceladus. The Trojan group, also found within the inner large group, comprises four satellites, Telesto, Calypso, Helene, and Polydeuces. The outer large group comprises four satellites, Rhea, Titan, Hyperion, and Iapetus. The Inuit group comprises five satellites, Kiviuq, Ijiraq, Paaliaq, Siarnaq, and Tarqeq. Of the 29 satellites comprising the Norse group, only 21 are named: Phoebe, Skathi, Skoll, Greip, Hyrrokkin, Jamsaxa, Mundilfari, Bergelmir, Narvi, Suttungr, Hati, Farbauti, Thrymr, Aegir, Bestia, Fenrir, Surtur, Kari, Ymir, Loge, and Fornjot. The Gallic group consists of four satellites, Albiorix, Bebhionn, Erriapus, and Tarvos.

Almost all of Saturn's inner moons form a regular system of satellites; that is, their orbits are nearly circular and lie in the equatorial plane of the planet; almost all of the outer moons' orbits are inclined. Except for Hyperion, which has a chaotic orbit, and Phoebe, all the satellites are believed to have synchronous orbits; that is, their orbital and rotational periods are the same, so that they always keep the same face turned toward Saturn. The largest satellite, Titan, is 3,200 mi (5,150 km) in diameter and has the size and cold temperatures necessary to retain an atmosphere; it is the only natural satellite in the solar system with a substantial atmosphere.

Saturn has six major icy satellites that can be easily seen through earth-based telescopes. The most prominent feature of heavily cratered Mimas, the innermost of the six, is a large impact crater about one third the diameter of the satellite. Certain broad regions of Enceladus are uncratered, indicating geological activity that has resurfaced the satellite within the last 100 million years. Tethys also has a very large impact crater, as well as an extensive series of valleys and troughs that stretches three quarters of the way around the satellite. Both Dione and Rhea have bright, heavily cratered leading hemispheres and darker trailing hemispheres with wispy streaks that are thought to be produced by deposits of ice inside surface troughs or cracks. Iapetus, the outermost of the large icy satellites, has a dark leading hemisphere and a bright trailing hemisphere.

The remaining satellites are smaller. The two largest of these, the dark-surfaced Phoebe and the irregularly shaped Hyperion, orbit far from the planet; the Norse group of satellites orbit with retrograde motion, i.e., opposite to that of the planet's rotation. The smallest satellites, less than c.6 mi (10 km) in diameter, include Daphnis, the Alkyonides, Polydeuces, some of the Inuit and Gallic groups, and nearly all of the Norse group.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Saturn (in astronomy)
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.