atomic bomb

The Columbia Encyclopedia, 6th ed.

atomic bomb

atomic bomb or A-bomb, weapon deriving its explosive force from the release of nuclear energy through the fission (splitting) of heavy atomic nuclei. The first atomic bomb was produced at the Los Alamos, N.Mex., laboratory and successfully tested on July 16, 1945. This was the culmination of a large U.S. army program that was part of the Manhattan Project, led by Dr. Robert Oppenheimer. It began in 1940, two years after the German scientists Otto Hahn and Fritz Strassman discovered nuclear fission. On Aug. 6, 1945, an atomic bomb was dropped on Hiroshima with an estimated equivalent explosive force of 12,500 tons of TNT, followed three days later by a second, more powerful, bomb on Nagasaki. Both bombs caused widespread death, injury, and destruction, and there is still considerable debate about the need to have used them.

Atomic bombs were subsequently developed by the USSR (1949; now Russia), Great Britain (1952), France (1960), and China (1964). A number of other nations, particularly India, Pakistan, Israel, and North Korea now have atomic bombs or the capability to produce them; South Africa formerly possessed a small arsenal. The three smaller Soviet successor states that inherited nuclear arsenals (Ukraine, Kazakhstan, and Belarus) relinquished all nuclear warheads, which have been removed to Russia.

Atomic bombs have been designed by students, but their actual construction is a complex industrial process. Practical fissionable nuclei for atomic bombs are the isotopes uranium-235 and plutonium-239, which are capable of undergoing chain reaction. If the mass of the fissionable material exceeds the critical mass (a few pounds), the chain reaction multiplies rapidly into an uncontrollable release of energy. An atomic bomb is detonated by bringing together very rapidly (e.g., by means of a chemical explosive) two subcritical masses of fissionable material, the combined mass exceeding the critical mass. An atomic bomb explosion produces, in addition to the shock wave accompanying any explosion, intense neutron and gamma radiation, both of which are very damaging to living tissue. The neighborhood of the explosion becomes contaminated with radioactive fission products. Some radioactive products are borne into the upper atmosphere as dust or gas and may subsequently be deposited partially decayed as radioactive fallout far from the site of the explosion.

See disarmament, nuclear; hydrogen bomb; nuclear strategy; and nuclear weapons; see also nuclear energy.

See G. Herken, The Winning Weapon (1988) and Brotherhood of the Bomb (2002); R. Rhodes, The Making of the Atomic Bomb (1986, repr. 1995); R. Serber, The Los Alamos Primer: The First Lectures on How to Build an Atomic Bomb (1992); R. Fermi et al., Picturing the Bomb: Photographs from the Secret World of the Manhattan Project (1995); P. B. Hales, Atomic Spaces: Living on the Manhattan Project (1997); J. Baggott, The First War of Physics: The Secret History of the Atom Bomb, 1939–1949 (2010).

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

atomic bomb
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.