# atomic weight

The Columbia Encyclopedia, 6th ed.

# atomic weight

atomic weight, mean (weighted average) of the masses of all the naturally occurring isotopes of a chemical element, as contrasted with atomic mass, which is the mass of any individual isotope. Although the first atomic weights were calculated at the beginning of the 19th cent., it was not until the discovery of isotopes by F. Soddy (c.1913) that the atomic mass of many individual isotopes was determined, leading eventually to the adoption of the atomic mass unit as the standard unit of atomic weight. For many elements with two or more stable isotopes, atomic weight is now expressed as a variable interval with a lower and upper bound instead of a single number; in the case of hydrogen, for example, this is typically written as: [1.00784; 1.00811].

Atomic weights were formerly determined directly by chemical means; now a mass spectrograph is usually employed. The atomic mass and relative abundance of the isotopes of an element can be measured very accurately and with relative ease by this method, whereas chemical determination of the atomic weight of an element requires a careful and precise quantitative analysis of as many of its compounds as possible.

Development of the Concept of Atomic Weight

J. L. Proust formulated (1797) what is now known as the law of definite proportions, which states that the proportions by weight of the elements forming any given compound are definite and invariable. John Dalton proposed (c.1810) an atomic theory in which all atoms of an element have exactly the same weight. He made many measurements of the combining weights of the elements in various compounds. By postulating that simple compounds always contain one atom of each element present, he assigned relative atomic weights to many elements, assigning a weight of 1 to hydrogen as the basis of his scale. He thought that water had the formula HO, and since he found by experiment that 8 weights of oxygen combine with 1 weight of hydrogen, he assigned an atomic weight of 8 to oxygen. Dalton also formulated the law of multiple proportions, which states that when two elements combine in more than one proportion by weight to form two or more distinct compounds, their weight proportions in those compounds are related to one another in simple ratios. Dalton's work sparked an interest in determining atomic weights, even though some of his results—such as that for oxygen—were soon shown to be incorrect.

While Dalton was working on weight relationships in compounds, J. L. Gay-Lussac was experimenting with the chemical reactions of gases, and he found that, when under the same conditions of temperature and pressure, gases react in simple whole-number ratios by volume. Avogadro proposed (1811) a theory of gases that holds that equal volumes of two gases at the same temperature and pressure contain the same number of particles, and that these basic particles are not always single atoms. This theory was rejected by Dalton and many other chemists.

P. L. Dulong and A. T. Petit discovered (1819) a specific-heat method for determining the approximate atomic weight of elements. Among the first chemists to work out a systematic group of atomic weights (c.1830) was J. J. Berzelius, who was influenced in his choice of formulas for compounds by the method of Dulong and Petit. He attributed the formula H2O to water and determined an atomic weight of 16 for oxygen. J. S. Stas later refined many of Berzelius's weights. Stanislao Cannizzaro applied Avogadro's theories to reconcile atomic weights used by organic and inorganic chemists.

The availability of fairly accurate atomic weights and the search for some relationship between atomic weight and chemical properties led to J. A. R. Newlands's table of "atomic numbers" (1865), in which he noted that if the elements were arranged in order of increasing atomic weight "the eighth element, starting from a given one, is a kind of repetition of the first." He called this the law of octaves. Such investigations led to the statement of the periodic law, which was discovered independently (1869) by D. I. Mendeleev in Russia and J. L. Meyer in Germany. T. W. Richards did important work on atomic weights (after 1883) and revised some of Stas's values.

If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items
Notes

#### Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

atomic weight
Settings

Typeface
Text size
Search within

Look up

#### Look up a word

• Dictionary
• Thesaurus
Please submit a word or phrase above.

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

## Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

## Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

## Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.