cell (in biology)

The Columbia Encyclopedia, 6th ed.
Save to active project

cell (in biology)

cell, in biology, the unit of structure and function of which all plants and animals are composed. The cell is the smallest unit in the living organism that is capable of integrating the essential life processes. There are many unicellular organisms, e.g., bacteria and protozoans, in which the single cell performs all life functions. In higher organisms, a division of labor has evolved in which groups of cells have differentiated into specialized tissues, which in turn are grouped into organs and organ systems.

Cells can be separated into two major groups—prokaryotes, cells whose DNA is not segregated within a well-defined nucleus surrounded by a membranous nuclear envelope, and eukaryotes, those with a membrane-enveloped nucleus. The bacteria (kingdom Monera) are prokaryotes. They are smaller in size and simpler in internal structure than eukaryotes and are believed to have evolved much earlier (see evolution). All organisms other than bacteria consists of one or more eukaryotic cells.

All cells share a number of common properties; they store information in genes made of DNA (see nucleic acid); they use proteins as their main structural material; they synthesize proteins in the cell's ribosomes using the information encoded in the DNA and mobilized by means of RNA; they use adenosine triphosphate as the means of transferring energy for the cell's internal processes; and they are enclosed by a cell membrane, composed of proteins and a double layer of lipid molecules, that controls the flow of materials into and out of the cell.

Cell Structure

In the nucleus the DNA, along with certain proteins, is arranged in long, thin threads called chromatin fibers that coil into bodies called chromosomes during meiosis. The nucleus also contains one or more nucleoli (sing., nucleolus) that participate in the production on the RNA of ribosomes. The portion of the cell outside the nucleus, called the cytoplasm, contains several additional cell structures (often called organelles). Among the important organelles that may be present are the ribosomes; the endoplasmic reticulum, a highly convoluted system of membranes believed to be continuous with the nuclear envelope and responsible for transporting certain newly made proteins; the mitochondria, which extract energy by breaking down the chemical bonds in molecules of complex nutrients during respiration; the chloroplasts, which are present only in green plants and convert energy from sunlight by the process of photosynthesis; lysosomes, which contain digestive enzymes; peroxisomes, which contain a number of specialized enzymes; the centrosomes, which function during cell division; the Golgi apparatus, which functions in the synthesis, storage, and secretion of various cellular products; filaments and microtubules that form a sort of skeletal system known as a cytoskeleton and also participate in movement of cells and organelles; vacuoles containing food in various stages of digestion (see endocytosis); and inert granules and crystals. In plant cells there is, in addition to the cell membrane, a thickened cell wall, usually composed chiefly of cellulose secreted by the cell.

The Study of Cells

Because almost all cells are microscopic, knowledge of the component cell parts increased proportionately to the development of the microscope and other specialized instruments and of allied experimental techniques. Among those who contributed to early knowledge of cells through their use of the microscope were Antony van Leeuwenhoek, Robert Hooke, and Marcello Malpighi. In the 19th cent. Matthias J. Schleiden and Theodor Schwann developed what is now known as the cell theory. The theory was widely promoted after the pronouncement by Rudolf Virchow in 1855 that "omnis cellulae e cellula" [All cells arise from cells]. The study of cell structure came to be called cytology and that of tissues histology. In the 20th cent. appreciation of the biochemistry of the cell has flourished, along with a better understanding of its structure; cell biology now integrates both chemical and structural information.

See also biochemistry.

Bibliography

See L. Thomas, The Lives of a Cell (1974); D. M. Prescott, Cells (1988); B. Alberts et al., Molecular Biology of the Cell (2d ed. 1989); J. M. Lackie and J. A. Dowe, ed., The Dictionary of Cell Biology (1989).

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

cell (in biology)
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?