chromosphere

The Columbia Encyclopedia, 6th ed.
Save to active project

chromosphere

chromosphere (krō´məsfēr´) [Gr.,=color sphere], layer of rarefied, transparent gases in the solar atmosphere; it measures 6,000 mi (9,700 km) in thickness and lies between the photosphere (the sun's visible surface) and the corona (its outer atmosphere).

Composition and Characteristics of the Chromosphere

The flash spectrum has been a valuable tool in the study of the chromosphere. This spectrum is obtained before a solar eclipse reaches totality and is formed from the thin arc of the sun disappearing behind the moon's disk. An analysis of the emission lines gives information about the heights of the chromosphere and the heights at which various elements exist in it. Using the flash spectrum, scientists have found that the chromosphere is composed primarily of hydrogen, which causes its visible pinkish tint, and of sodium, magnesium, helium, calcium, and iron in lesser amounts. The chromosphere consists of three distinct layers that, moving outward from the sun's surface, decrease in density and increase abruptly in temperature. The lower chromosphere is about 10,800°F (6,000°C), the middle rises to 90,000°F (50,000°C), and the upper part, merging into the lower corona, reaches 1,800,000°F (1,000,000°C).

Solar Activity Originating in the Chromosphere

Spicules and Plages

At 600 mi (1,000 km) above the photosphere, the chromosphere separates into cool, high-density columns, called spicules, and hot, low-density material. The spicules, each about 500 mi (800 km) in diameter, shoot out at 20 mi per sec (32 km per sec) and rise as high as 10,000 mi (16,000 km) before falling back. Any point on the sun will erupt a spicule about once every 24 hr and there may be up to 250,000 of them at any instant.

Other types of solar activity are found to occur in the chromosphere. The elements of each layer are sometimes distributed in bright, cloudlike patches called plages, or flocculi, and in general are located along the same zones as sunspots and fluctuate with the same 11-yr cycle; the relationship between the two is not yet understood.

Quiescent and Eruptive Prominences

Most spectacular of the solar features are the streams of hot gas, called prominences, that shoot out thousands or even hundreds of thousands of miles from the sun's surface at velocities as great as 250 mi per sec (400 km per sec). Two major classifications are the quiescent and the eruptive prominences. Quiescent prominences bulge out from the surface about 20,000 mi (32,000 km) and can last days or weeks. Eruptive prominences are thin flames of gas often reaching heights of 250,000 mi (400,000 km); they occur most frequently in the zones containing sunspots. Dark strandlike objects called filaments were discovered on the disk and were originally thought to be a special kind of feature. These are now known to be prominences seen against the bright background of the photosphere.

Until the middle of the 19th cent. prominences could be viewed extending from the edge of the sun's disk only during a solar eclipse. However, in 1868 a method of observing them with a spectroscope at any clear time of day was developed, and in 1930 the invention of the coronagraph allowed them to be continuously photographed.

Solar Flares

Another phenomenon occurring in the chromosphere is the solar flare, a sudden and intense brightening in a plage that rises to great brilliance in a few minutes, then fades dramatically in a half hour to several hours. This feature is also associated with sunspots and is thought to be triggered by the sudden collapse of the magnetic field in the plage. A flare releases the energy equivalent of a billion hydrogen bombs and is the most energetic of solar events. The ultraviolet and X-ray radiation from larger flares can disrupt magnetic compasses and navigation and radio signals as well as affect the electrical grid on the earth and can damage satellites and space probes. Cosmic rays and solar wind particles from some flares interact in the polar regions, creating brilliant auroral displays (see aurora).

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

chromosphere
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?