ecology

The Columbia Encyclopedia, 6th ed.
Save to active project

ecology

ecology, study of the relationships of organisms to their physical environment and to one another. The study of an individual organism or a single species is termed autecology; the study of groups of organisms is called synecology.

The Ecosystem

Within the biosphere—the total expanse of water, land, and atmosphere able to sustain life—the basic ecological unit is the ecosystem. An ecosystem may be as small as a tidal pool or a rotting log or as large as an ocean or a continent-spanning forest. Each ecosystem consists of a community of plants and animals in an environment that supplies them with raw materials for life, i.e., chemical elements and water. The ecosystem is delimited by the climate, altitude, water and soil characteristics, and other physical conditions of the environment.

The Food Web and Other Vital Cycles

The energy necessary for all life processes reaches the earth in the form of sunlight. By photosynthesis green plants convert the light energy into chemical energy, and carbon dioxide and water are transformed into sugar and stored in the plant. Herbivorous animals acquire some of the stored energy by eating the plants; those animals in turn serve as food for, and so pass the energy to, predatory animals. Such sequences, called food chains, overlap at many points, forming so-called food webs. For example, insects are food for reptiles, which are food for hawks. But hawks also feed directly on insects and on other birds that feed on insects, while some reptiles prey on birds. Since a severe loss of the original energy occurs with each transfer from species to species, the ecologist views the food (energy) structure as a pyramid: Each level supports a smaller number and mass of organisms. Thus in a year's time it would take millions of plants weighing tons to feed the several steer weighing a few tons that could support one or two people. The ecological conclusion is that if human beings would eat more plants and fewer animals, food resources would stretch much further. Once the energy for life is spent, it cannot be replenished except by the further exposure of green plants to sunlight.

The chemical materials extracted from the environment and elaborated into living tissue by plants and animals are continually recycled within the ecosystem by such processes as photosynthesis, respiration, nitrogen fixation, and nitrification. These natural processes of withdrawing and returning materials are variously called the carbon cycle, the oxygen cycle, and the nitrogen cycle. Water is also cycled. Evaporation from lakes and oceans forms clouds; the clouds release rain that is taken up by the soil, absorbed by plants, and passed on to feeding animals—which also drink directly from pools and lakes that catch the rain. The water in plant and animal wastes and dead tissue then evaporates and can be recycled. Interference with these vital cycles by disturbance of the environment—for example, by pollution of the air and water—may disrupt the workings of the entire ecosystem. The cycles are facilitated when an ecosystem has a sufficient biological diversity of species to fill its so-called ecological niches, the different functional sites in the environment where organisms can act as producers of energy, consumers of energy, or decomposers of wastes. Such diversity tends to make a community stable and self-perpetuating.

Climax Communities

A climax community is one that has reached the stable stage. When extensive and well defined, the climax community is called a biome. Examples are tundra, grassland, desert, and the deciduous, coniferous, and tropical rain forests. Stability is attained through a process known as succession, whereby relatively simple communities are replaced by those more complex. Thus, on a lakefront, grass may invade a build-up of sand. Humus formed by the grass then gives root to oaks and pines and lesser vegetation, which displaces the grass and forms a further altered humus. That soil eventually nourishes maple and beech trees, which gradually crowd out the pines and oaks and form a climax community. In addition to trees, each successive community harbors many other life forms, with the greatest diversity populating the climax community.

Similar ecological zonings occur among marine flora and fauna, dependent on such environmental factors as bottom composition, availability of light, and degree of salinity. In other respects, the capture by aquatic plants of solar energy and inorganic materials, as well as their transfer through food chains and cycling by means of microorganisms, parallels those processes on land.

The early 20th-century belief that the climax community could endure indefinitely is now rejected because climatic stability cannot be assumed over long periods of time. In addition nonclimatic factors, such as soil limitation, can influence the rate of development. It is clear that stable climax communities in most areas can coexist with human pressures on the ecosystem, such as deforestation, grazing, and urbanization. Polyclimax theories stress that plant development does not follow predictable outlines and that the evolution of ecosystems is subject to many variables.

Bibliography

See E. P. Odum, Fundamentals of Ecology (3d ed. 1971); R. L. Smith, ed., The Ecology of Man: An Ecosystem Approach (1971); P. A. Colinvaux, Introduction to Ecology (1973); R. M. Darnell, Ecology and Man (1973); T. C. Emmel, An Introduction to Ecology and Population Biology (1973); D. B. Sutton and N. P. Harman, Ecology: Selected Concepts (1973); K. E. F. Watt, Principles of Environmental Science (1973); D. Worster, Nature's Economy (1977); R. Brewer, The Science of Ecology (1988).

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

ecology
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?