genetic engineering

The Columbia Encyclopedia, 6th ed.

genetic engineering

genetic engineering, the use of various methods to manipulate the DNA (genetic material) of cells to change hereditary traits or produce biological products. The techniques include the use of hybridomas (hybrids of rapidly multiplying cancer cells and of cells that make a desired antibody) to make monoclonal antibodies; gene splicing or recombinant DNA, in which the DNA of a desired gene is inserted into the DNA of a bacterium, which then reproduces itself, yielding more of the desired gene; and polymerase chain reaction, which makes perfect copies of DNA fragments and is used in DNA fingerprinting.

Genetically engineered products include bacteria designed to break down oil slicks and industrial waste products, drugs (human and bovine growth hormones, human insulin, interferon), and plants that are resistant to diseases, insects, and herbicides, that yield fruits or vegetables with desired qualities, or that produce toxins that act as pesticides. Genetic engineering techniques have also been used in the direct genetic alteration of livestock and laboratory animals (see pharming). In 2014 scientists at the Scripps Research Institute created genetically engineered Escherichia coli bacteria that included a pair of synthetic nucleotides, or DNA bases, in its genetic code. Genetically engineered products usually require the approval of at least one U.S. government agency, such as the Dept. of Agriculture, the Food and Drug Administration, or the Environmental Protection Agency.

Because genetic engineering involves techniques used to obtain patents on human genes and to create patentable living organisms, it has raised many legal and ethical issues. The safety of releasing into the environment genetically altered organisms that might disrupt ecosystems has also been questioned. The discovery in 2001 of genetically engineered DNA in native Mexican corn varieties made concerns of genetic pollution actual, and led some scientists to worry that the spread of transgenes through cross-pollination could lead to a reduction in genetic diversity in important crops. Transgenic rape (canola) plants also have been found in the wild in several countries. Imports of genetically modified corn, soybeans, and other crops have been curtailed or limited in some countries, and the vast majority of such crops are grown in just a handful of nations. The Cartagena Protocol on Biosafety, which has been signed by more than 100 nations and took effect in Sept., 2003, requires detailed information on whether and how imported seeds, plants, animals, other organisms, and the like are genetically modified and permits a nation to bar those imports, but a 2006 World Trade Organization decision treated the banning of genetically modified crops as a form of protectionism. The United States is not party to the 2003 treaty.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

genetic engineering
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.