helium

The Columbia Encyclopedia, 6th ed.
Save to active project

helium

helium (hē´lēəm), gaseous chemical element; symbol He; at. no. 2; at. wt. 4.0026; m.p. below -272°C at 26 atmospheres pressure; b.p. -268.934°C at 1 atmosphere pressure; density 0.1785 grams per liter at STP; valence usually 0.

Spectroscopic evidence for the presence of helium in the sun was first obtained during a solar eclipse in 1868. A bright yellow emission line was observed and was later shown to correspond to no known element; the new element was named by J. N. Lockyer and E. Frankland from helios [Gr.,=sun]. Helium was isolated (1895) from a sample of the uranium mineral cleveite by Sir William Ramsay.

Properties and Isotopes

Helium is less dense than any other known gas except hydrogen and is about one seventh as dense as air. Extremely unreactive, it is an inert gas in Group 18 of the periodic table. Natural helium is a mixture of two stable isotopes, helium-3 and helium-4. In helium obtained from natural gas about one atom in 10 million is helium-3. The unstable isotopes helium-5, helium-6, and helium-8 have been synthesized. The alpha particles that are emitted from certain radioactive substances are identical to helium-4 nuclei (two protons and two neutrons).

Helium-4 is unusual in that it forms two different kinds of liquids. When it is cooled below 4.22°K (its boiling point at atmospheric pressure) it condenses to liquid helium-I, which behaves as an ordinary liquid. When liquid helium-I is cooled below about 2.18°K (at atmospheric pressure), liquid helium-II is formed. Liquid helium-II has a number of unusual properties. It is sometimes called a superfluid because it has extremely low viscosity. It also has extremely high heat conductivity and expands on cooling. It cannot be contained in an open beaker since a thin film of it creeps up the side, over the lip, and flows down the outside. The study of these phenomena is a part of low-temperature physics. When helium-3 is liquefied and cooled it does not exhibit the properties of liquid helium-II; this difference in properties between helium-3 and helium-4 can be explained in terms of quantum mechanics.

Natural Occurrence and Preparation

Helium is rare and costly. Wells in Texas (where the Federal Helium Reserve was established in 1925 near Amarillo), Oklahoma, and Kansas are the principal world source. Crude helium is separated by liquefying the other gases present in the natural gas; it is then either further purified or stored for later purification and use. Some helium is extracted directly from the atmosphere; the gas is also found in certain uranium minerals and in some mineral waters, but not in economic quantities. It has been estimated that helium makes up only about 0.000001% of the combined weight of the earth's atmosphere and crust; it is most concentrated in the exosphere, which is the outermost region of the atmosphere, 600–1500 mi (960–2400 km) above the earth's surface. Helium is abundant in outer space; it makes up about 23% of the mass of the visible universe. It is the end product of energy-releasing fusion processes in stars (see interstellar matter).

Uses

Helium's noncombustibility and buoyancy (second only to hydrogen) make it the most suitable gas for balloons and other lighter-than-air craft. A mixture of helium and oxygen is often supplied as a breathing mixture for deep-sea divers and caisson workers and is used in decompression chambers; because helium is less soluble in human blood than nitrogen, its use reduces the risk of caisson disease, or the "bends." Helium can also be used wherever an unreactive atmosphere is needed, e.g., in electric arc welding, in growing crystals of silicon and germanium for semiconductors, and in refining titanium and zirconium metals. It is also used to pressurize the fuel tanks of liquid-fueled rockets. Liquid helium is essential for many low temperature applications (see low-temperature physics).

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

helium
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?