information theory

The Columbia Encyclopedia, 6th ed.

information theory

information theory or communication theory, mathematical theory formulated principally by the American scientist Claude E. Shannon to explain aspects and problems of information and communication. While the theory is not specific in all respects, it proves the existence of optimum coding schemes without showing how to find them. For example, it succeeds remarkably in outlining the engineering requirements of communication systems and the limitations of such systems.

In information theory, the term information is used in a special sense; it is a measure of the freedom of choice with which a message is selected from the set of all possible messages. Information is thus distinct from meaning, since it is entirely possible for a string of nonsense words and a meaningful sentence to be equivalent with respect to information content.

Measurement of Information Content

Numerically, information is measured in bits (short for binary digit; see binary system). One bit is equivalent to the choice between two equally likely choices. For example, if we know that a coin is to be tossed but are unable to see it as it falls, a message telling whether the coin came up heads or tails gives us one bit of information. When there are several equally likely choices, the number of bits is equal to the logarithm of the number of choices taken to the base two. For example, if a message specifies one of sixteen equally likely choices, it is said to contain four bits of information. When the various choices are not equally probable, the situation is more complex.

Interestingly, the mathematical expression for information content closely resembles the expression for entropy in thermodynamics. The greater the information in a message, the lower its randomness, or "noisiness," and hence the smaller its entropy. Since the information content is, in general, associated with a source that generates messages, it is often called the entropy of the source. Often, because of constraints such as grammar, a source does not use its full range of choice. A source that uses just 70% of its freedom of choice would be said to have a relative entropy of 0.7. The redundancy of such a source is defined as 100% minus the relative entropy, or, in this case, 30%. The redundancy of English is estimated to be about 50%; i.e., about half of the elements used in writing or speaking are freely chosen, and the rest are required by the structure of the language.

Analysis of the Transfer of Messages through Channels

A message proceeds along a channel from the source to the receiver; information theory defines for any given channel a limiting capacity or rate at which it can carry information, expressed in bits per second. In general, it is necessary to process, or encode, information from a source before transmitting it through a given channel. For example, a human voice must be encoded before it can be transmitted by telephone. An important theorem of information theory states that if a source with a given entropy feeds information to a channel with a given capacity, and if the source entropy is less than the channel capacity, a code exists for which the frequency of errors may be reduced as low as desired. If the channel capacity is less than the source entropy, no such code exists.

The theory further shows that noise, or random disturbance of the channel, creates uncertainty as to the correspondence between the received signal and the transmitted signal. The average uncertainty in the message when the signal is known is called the equivocation. It is shown that the net effect of noise is to reduce the information capacity of the channel. However, redundancy in a message, as distinguished from redundancy in a source, makes it more likely that the message can be reconstructed at the receiver without error. For example, if something is already known as a certainty, then all messages about it give no information and are 100% redundant, and the information is thus immune to any disturbances of the channel. Using various mathematical means, Shannon was able to define channel capacity for continuous signals, such as music and speech.

Bibliography

See C. E. Shannon and W. Weaver, The Mathematical Theory of Communication (1949); M. Mansuripur, Introduction to Information Theory (1987); J. Gleick, The Information: A History, a Theory, a Flood (2011).

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

information theory
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.