low-temperature physics

The Columbia Encyclopedia, 6th ed.

low-temperature physics

low-temperature physics, science concerned with the production and maintenance of temperatures much below normal, down to almost absolute zero, and with various phenomena that occur only at such temperatures. The temperature scale used in low-temperature physics is the Kelvin temperature scale, or absolute temperature scale, which is based on the behavior of an idealized gas (see gas laws; kinetic-molecular theory of gases). Low-temperature physics is also known as cryogenics, from the Greek meaning "producing cold." Low temperatures are achieved by removing energy from a substance. This may be done in various ways. The simplest way to cool a substance is to bring it into contact with another substance that is already at a low temperature. Ordinary ice, dry ice (solid carbon dioxide), and liquid air may be used successively to cool a substance down to about 80°K (about -190°C). The heat is removed by conduction, passing from the substance to be cooled to the colder substance in contact with it. If the colder substance is a liquefied gas (see liquefaction), considerable heat can be removed as the liquid reverts to its gaseous state, since it will absorb its latent heat of vaporization during the transition. Various liquefied gases can be used in this manner to cool a substance to as low as 4.K, the boiling point of liquid helium. If the vapor over the liquid helium is continually pumped away, even lower temperatures, down to less than K, can be achieved because more helium must evaporate to maintain the proper vapor pressure of the liquid helium. Most processes used to reduce the temperature below this level involve the heat energy that is associated with magnetization (see magnetism). Successive magnetization and demagnetization under the proper combination of conditions can lower the temperature to only about a millionth of a degree above absolute zero. Reaching such low temperatures becomes increasingly difficult, as each temperature drop requires finding some kind of energy within the substance and then devising a means of removing this energy. Moreover, according to the third law of thermodynamics, it is theoretically impossible to reduce a substance to absolute zero by any finite number of processes. Superconductivity and superfluidity have traditionally been thought of as phenomena that occur only at temperatures near absolute zero, but by the late 1980s several materials that exhibit superconductivity at temperatures exceeding 100°K had been found. Superconductivity is the vanishing of all electrical resistance in certain substances when they reach a transition temperature that varies from one substance to another; this effect can be used to produce powerful superconducting magnets. Superfluidity occurs in liquid helium and leads to the tendency of liquid helium to flow over the sides of any container it is placed in without being stopped by friction or gravity.

See A. C. Helden, The Coldest Spot on Earth (1989).

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

low-temperature physics
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.