machine

The Columbia Encyclopedia, 6th ed.

machine

machine, arrangement of moving and stationary mechanical parts used to perform some useful work or to provide transportation. From a historical perspective, many of the first machines were the result of human efforts to improve war-making capabilities; the term engineer at one time had an exclusively military connotation. In the United States the original colonies were not permitted to make or import machine tools; it was only after the Revolution that the first manufacturing machines were built (c.1790) by Samuel Slater for a textile mill in Pawtucket, R.I.

Types of Machines

By means of a machine an applied force is increased, its direction is changed, or one form of motion or energy is changed into another form. Thus defined, such simple devices as the lever, the pulley, the inclined plane, the screw, and the wheel and axle are machines. They are called simple machines; more complicated machines are merely combinations of them. Of the five, the lever, the pulley, and the inclined plane are primary; the wheel and axle and the screw are secondary. The wheel and axle combination is a rotary lever, while the screw may be considered an inclined plane wound around a core. The wedge is a double inclined plane.

Complex machines are designated, as a rule, by the operations they perform; the complicated devices used for sawing, planing, and turning, for example, are known as sawing machines, planing machines, and turning machines respectively and as machine tools collectively. Machines used to transform other forms of energy (as heat) into mechanical energy are known as engines, i.e. the steam engine or the internal-combustion engine. The electric motor transforms electrical energy into mechanical energy. Its operation is the reverse of that of the electric generator, which transforms the energy of falling water or steam into electrical energy.

Mechanical Advantage and Efficiency of Machines

By means of a machine, a small force, or effort, can be applied to move a much greater resistance, or load. In doing so, however, the applied force must move through a much greater distance than it would if it could move the load directly. The mechanical advantage (MA) of a machine is the factor by which it multiplies any applied force. The MA may be calculated from the ratio of the forces involved or from the ratio of the distances through which they move. Ideally, the two ratios are equal, and it is simpler to calculate the ratio of the distance the effort moves to the distance the resistance moves; this is called the ideal mechanical advantage (IMA). In any real machine some of the effort is used to overcome friction. Thus, the ratio of the resistance force to the effort, called the actual mechanical advantage (AMA), is less than the IMA.

The efficiency of any machine measures the degree to which friction and other factors reduce the actual work output of the machine from its theoretical maximum. A frictionless machine would have an efficiency of 100%. A machine with an efficiency of 20% has an output only one fifth of its theoretical output. The efficiency of a machine is equal to the ratio of its output (resistance multiplied by the distance it is moved) to its input (effort multiplied by the distance through which it is exerted); it is also equal to the ratio of the AMA to the IMA. This does not mean that low-efficiency machines are of limited use. An automobile jack, for example, must overcome a great deal of friction and therefore has low efficiency, but it is extremely valuable because small effort can be applied to lift a great weight.

Although most machines are used to multiply an effort so that it may move a greater resistance, they may have other purposes. For example, a single, fixed pulley merely changes the direction of the applied force; the pulley may make it easier to lift the load, since a person can pull down on a rope, thus adding his or her own weight to the effort, rather than simply lifting the load. In a catapult an effort greater than the load moves through a short distance, causing the load to be moved through a large distance before being released. As the load is being moved, it picks up speed so that it is traveling at a considerable velocity when it leaves the catapult.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

machine
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.