# strength of materials

The Columbia Encyclopedia, 6th ed.

# strength of materials

strength of materials, measurement in engineering of the capacity of metal, wood, concrete, and other materials to withstand stress and strain. Stress is the internal force exerted by one part of an elastic body upon the adjoining part, and strain is the deformation or change in dimension occasioned by stress. When a body is subjected to pull, it is said to be under tension, or tensional stress, and when it is being pushed, i.e., is supporting a weight, it is under compression, or compressive stress. Shear, or shearing stress, results when a force tends to make part of the body or one side of a plane slide past the other. Torsion, or torsional stress, occurs when external forces tend to twist a body around an axis. Materials are considered to be elastic in relation to an applied stress if the strain disappears after the force is removed. The elastic limit is the maximum stress a material can sustain and still return to its original form. According to Hooke's law, the stress created in an elastic material is proportional to strain, within the elastic limit (see elasticity). In calculating the dimensions of materials required for specific application, the engineer uses working stresses that are ultimate strengths, or elastic limits, divided by a quantity called factor of safety. In laboratories materials are frequently "tested to destruction." They are deliberately overloaded with the particular force that acts against the property or strength to be measured. Changes in form are measured to the millionth of an inch. Static tests are conducted to determine a material's elastic limit, ductility, hardness, reaction to temperature change, and other qualities. Dynamic tests are those in which the material is exposed to a combination of expected operating circumstances including impact (e.g., a shell against a steel tank), vibration, cyclic stress, fluctuating loads, and fatigue. Polarized light, X rays, ultrasonic waves, and microscopic examination are some of the means of testing materials.

See H. E. Parker, Simplified Mechanics and Strength of Materials (rev. ed. 1961); S. Timoshenko and D. H. Young, Elements of Strength of Materials (5th ed. 1968); M. G. Bassin, Statics and Strength of Materials (4th ed. 1988).

If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Highlights (0)
Some of your highlights are legacy items.
Citations (0)
Some of your citations are legacy items.
Notes (0)
Bookmarks (0)

Project items include:
• Saved book/article
• Highlights
• Quotes/citations
• Notes
• Bookmarks
Notes

#### Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

#### Cited article

strength of materials
Settings

#### Settings

Typeface
Text size Reset View mode
Search within

Look up

#### Look up a word

• Dictionary
• Thesaurus
Please submit a word or phrase above.

Why can't I print more than one page at a time?

Full screen

## Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

## Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

## Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.