wave (in the earth sciences)

The Columbia Encyclopedia, 6th ed.

wave (in the earth sciences)

wave, in oceanography, an oscillating movement up and down, of a body of water caused by the frictional drag of the wind, or on a larger scale, by submarine earthquakes, volcanoes, and landslides. In seismology, waves moving though the earth are caused by the propagation of a disturbance generated by an earthquake or explosion. In atmospheric science, waves are periodic disturbances in the air flow.

Oceanographic Waves

In a body of water, waves consist of a series of crests and troughs, where wavelength is the distance between two successive crests (or successive troughs). As waves are generated, the water particles are set in motion, following vertical circular orbits. Water particles momentarily move forward as the wave crest passes and backward as the trough passes. Thus, except for a slight forward drag, the water particles remain in essentially the same place as successive waves pass. The orbital motion of the water particles decreases in size at depths below the surface, so that at a depth equal to about one half of the wave's length, the water particles are barely oscillating back and forth. Thus, for even the largest waves, their effect is negligible below a depth of 980 ft (300 m).

The height and period of water waves in the deep ocean are determined by wind velocity, the duration of the wind, and the fetch (the distance the wind has blown across the water). In stormy areas, the waves are not uniform but form a confusing pattern of many waves of different periods and heights. Storms also produce white caps at wind speeds c.8 mi per hr (13 km per hr). Major storm waves can be over a half mile long and travel close to c.25 mi per hr (40 km per hour). A wave in the Gulf of Mexico associated with Hurricane Ivan (2004) measured 91 ft (27.7 m) high, and scientists believe that other waves produced by Ivan may have reached as much as 132 ft (40 m) high. Waves of similar heights, sometimes called rogue waves, most commonly occur in regions of strong ocean currents, which can amplify wind-driven waves when they flow in opposing directions; sandbanks may also act to focus wave energy and give rise to rogue waves.

When waves approach a shore, the orbital motion of the water particles becomes influenced by the bottom of the body of water and the wavelength decreases as the wave slows. As the water becomes shallower the wave steepens further until it "breaks" in a breaker, or surf, carrying the water forward and onto the beach in a turbulent fashion. Because waves usually approach the shore at an angle, a longshore (littoral) current is generated parallel to the shoreline. These currents can be effective in eroding and transporting sediment along the shore (see coast protection; beach).

In many enclosed or partly enclosed bodies of water such as lakes or bays, a wave form called a standing wave, or seiche, commonly develops as a result of storms or rapid changes in air pressure. These waves do not move forward, but the water surface moves up and down at antinodal points, while it remains stationary at nodal points.

Internal waves can form within waters that are density stratified and are similar to wind-driven waves. They usually cannot be seen on the surface, although oil slicks, plankton, and sediment tend to collect on the surface above troughs of internal waves. Any condition that causes waters of different density to come into contact with one another can lead to internal waves. They tend to have lower velocities but greater heights than surface waves. Very little is known about internal waves, which may move sediment on deeper parts of continental shelves.

Just as a rock dropped into water produces waves, sudden displacements such as landslides and earthquakes can produce high energy waves of short duration that can devastate coastal regions (see tsunami). Hurricanes traveling over shallow coastal waters can generate storm surges that in turn can cause devastating coastal flooding (see under storm).

Seismic and Atmospheric Waves

Seismic waves are generated in the earth by the movements of earthquakes or explosions. Depending on the material traveled through, surface and internal waves move at variable velocities. Layers of the earth, including the core, mantle, and crust, have been discerned using seismic wave profiles. Seismic waves from explosions have been used to understand the subsurface structure of the crust and upper mantle and in the exploration for oil and gas deposits. Atmospheric waves are caused by differences in temperature, the Coriolis effect, and the influence of highlands.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

wave (in the earth sciences)
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.