Organic Electronics: A Cleaner Substitute for Silicon. (Environews Innovations)

By Frazer, Lance | Environmental Health Perspectives, May 2003 | Go to article overview

Organic Electronics: A Cleaner Substitute for Silicon. (Environews Innovations)


Frazer, Lance, Environmental Health Perspectives


Until recently, plastics--ubiquitous in most areas of modern life--had yet to make inroads into the electronics industry; their molecular configuration made them nonconducive to electrical flow, limiting their uses to shells for computers and insulation for wires. But the last few years have brought discoveries that plastic polymers can be manipulated so they may be fashioned into transistors, conductors, and other electrical components. Such uses for these carbon/hydrogen/oxygen-based polymers are the subject of the field of organic electronics.

"This is a rapidly developing industry," says Michael Schen, group leader of the Electronics and Photonics Group of the National Institute of Standards and Technology Advanced Technology Program. "We are hearing about a wide variety of potential applications, [including] transistors, electronic circuits, high-density energy storage devices, advanced emissive displays, and advanced photovoltaics." And the benefits of plastics are substantial--in many cases, researchers are finding they offer a safer, cheaper, lighter alternative to silicon.

Safer, Cheaper, Lighter

Schen says organic electronics involves a much smaller set of hazardous compounds and materials than more traditional technologies. Gone are the arsenic (used in semiconductor manufacture), phosphine (used in transistor manufacture), lead (used in the phosphorescent coating in a traditional cathode ray tube, or CRT), and mercury (used in backlights).

Silicon and silicon-based components require millions of gallons of water and temperatures of 300-500[degrees]C to manufacture. A wide range of solvents are used in silicon and in semiconductor manufacture, including highly toxic xylene and toluene. The semiconductor industry uses hundreds of thousands of gallons of such solvents annually.

In contrast, says Stewart Hough, vice president of business development for Cambridge Display Technology, his company can create components at atmospheric pressure, and at temperatures of no more than 150[degrees]C. And, although the company does use solvents with its organic technology, "we can make ten thousand displays with one liter of standard organic solvent," he says. Furthermore, says Bernard Kippelen, an associate professor of optical sciences at the University of Arizona Optical Sciences Center, it may be possible to design organics that are soluble in less harmful solvents.

Polymers also are lighter and can cost much less to manufacture, although cost comparisons vary. Kippelen says his center's deposition machine is capable, after adaptation, of applying multilayer metal and organic layers as thin as 10 nanometers to a flexible plastic substrate at a cost approaching 1 cent per square centimeter (compared to a dollar or so to produce a square centimeter of silicon substrate). "Organic fabrication is compatible with plastic substrates, which means you can use a very low-cost ... substrate," he says. "Additionally, organics are good for large-area needs. For example, if you need a piece of silicon for a fingerprint recognition device, that one-square-centimeter piece of highly purified silicon"--which is quite large in terms of ultrapure silicon usage--"will be very expensive."

According to Kippelen, an organic photovoltaic cell could weigh 100 times less than a silicon-based cell. And, he says, "the promise with organics is related to the lower cost of the raw materials, in particular the substrate on which the device is built--a silicon wafer is more expensive than a sheet of plastic."

Experts generally concede that polymers won't be replacing silicon in certain applications, such as computer semiconductors, because silicon will always be significantly faster. However, plastics can serve as a substitute in applications where silicon is either impractical or too expensive to use. And improvements are on the way. "The technology is admittedly not at the same stage of maturity as something like LCD [liquid crystal display] technology, but this is a technology with great promise," Hough says.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Organic Electronics: A Cleaner Substitute for Silicon. (Environews Innovations)
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.