Brain Potentials after Clicking a Mouse: A New Psychophysiological Approach to Human-Computer Interaction

By Nittono, Hiroshi; Hamada, Aya et al. | Human Factors, Winter 2003 | Go to article overview
Save to active project

Brain Potentials after Clicking a Mouse: A New Psychophysiological Approach to Human-Computer Interaction


Nittono, Hiroshi, Hamada, Aya, Hori, Tadao, Human Factors


INTRODUCTION

In human factors and engineering psychological research, event-related brain potentials (ERPs) have been applied to assess mental workload (Kramer & Weber, 2000). In particular, the P3 (P300) component of the ERP is proposed to reflect the amount of perceptual-central processing resources allocated to the eliciting event (Donchin, Kramer, & Wickens, 1986).

Currently, three ERP techniques are used for assessing mental workload: (a) relevant probe technique (Fowler, 1994; Kramer, Sirevaag, & Braune, 1987); (b) irrelevant probe technique (Kramer, Trejo, & Humphrey, 1995; Ullsperger, Freude, & Erdmann, 2001); and (c) primary task technique (Kramer, Wickens, & Donchin, 1985; Sirevaag, Kramer, Coles, & Donchin, 1989). In the first two probe techniques, mental workload of the primary task is assessed indirectly with probe stimuli to which the participant has to pay attention (relevant probes) of pay no attention (irrelevant probes). It is suggested that a smaller P3 amplitude for the probe stimuli is associated with a higher processing demand of the primary task. However, the probe techniques are valid only under the assumption that the total amount of processing resources allocated to the primary task and the probe stimuli is constant, which is not always guaranteed.

The primary task technique assesses the participant's state of attention directly by measuring the P3 to certain discrete events embedded in the primary task (e.g., infrequent step changes of the target position in a tracking task). The more processing resources that are allocated to the primary task, the larger the P3 amplitude is for primary task events. The primary task technique appears to have an advantage over the probe techniques in that it is not based on the trade-off assumption. However, a paucity of discrete events that can be used as triggers for ERP averaging allows limited opportunities for applying it to real-world tasks.

In the present study, we propose a new candidate for the primary task technique to assess mental workload in human-computer interaction (HCI). When operating a computer, the user executes an intentional action to achieve a certain goal and evaluates whether a response from the computer is fit for the goal (Frese & Zapf, 1994; Norman, 1986). Theoretically, it is possible to record ERPs for a computer's response to the user's action. If a computer is programmed to produce an irregular response infrequently, a P3 will be elicited by that event, and its amplitude will be directly related to the amount of processing resources allocated to the task. We give a nickname, mouse click paradigm, to the procedure for measuring ERPs to the event triggered by the user's intentional action, given that mouse clicking is one of the most commonly executed actions in current HCI. In addition to mouse clicking, this action-perception paradigm is applicable to key pressing and similar actions in HCI tasks.

Although the idea is attractive, several problems should be addressed before using this method for practical applications. First, little is known about the nature of the ERPs to stimuli triggered by voluntary actions. In previous studies, ERPs were typically recorded for stimuli presented by the experimenter. The participant did nothing except keep still and wait for the stimuli. The idea of recording ERPs in an interactive task has a long history (e.g., O'Connor, 1981 ; Papakostopoulos, 1980; Rohrbaugh et al., 1986), yet few empirical studies have compared ERPs to stimuli triggered by voluntary actions with ERPs to the same stimuli presented automatically (McCarthy & Donchin, 1976; Schafer & Marcus, 1973). In the present context, it is necessary to examine whether the P3 is altered by the method of triggering stimuli. In a previous study, this issue was examined using an auditory target detection task (oddball task; Nittono & Ullsperger, 2000). When the stimuli were triggered by voluntary mouse clicks, the amplitude of the P3 was larger than when the same stimuli were presented automatically without mouse clicks.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

Brain Potentials after Clicking a Mouse: A New Psychophysiological Approach to Human-Computer Interaction
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?