Smooth Extremal Models in Finance and Insurance

By Chavez-Demoulin, V.; Embrechts, P. | Journal of Risk and Insurance, June 2004 | Go to article overview
Save to active project

Smooth Extremal Models in Finance and Insurance

Chavez-Demoulin, V., Embrechts, P., Journal of Risk and Insurance


This article describes smooth nonstationary generalized additive modeling for sample extremes, in which spline smoothers are incorporated into models for exceedances over high thresholds. We summarize the smoothing methodology as a new tool for practical extreme value exploration in finance and insurance.


Extreme value theory (EVT) has developed very rapidly over the past two decades both methodologically and with respect to applications. Whereas (nonlife) actuaries have, at least implicitly, used EVT techniques for a long time, mainly through the emergence of quantitative risk management, EVT has entered the finance stage more recently as a useful toolkit for describing nonstandard (more precisely nonnormal) price fluctuations. Econometricians for a long time were well aware of the so-called stylized facts of market data, which clearly showed that normal distribution-based models (i.e., Brownian motion technology) are only a first step into the direction of finding more realistic models. What was perhaps not so clear were the next steps, i.e., how to use this "heavy-tailed" reality in pricing, hedging, portfolio management, risk management and even banking, and insurance regulation. For the latter, despite the well-supported evidence for nonnormality, such tools like mean-variance optimization, value-at-risk (VaR), Sharpe-ratio, etc., play a very dominant role. EVT offers a pair of glasses through which to look at these types of questions more realistically. Embrechts, Kluppelberg, and Mikosch (1997) detail the mathematical theory of EVT and discuss its applications to financial and insurance risk management. Various updating material is to be found at and In Embrechts (2000), various papers highlight the current state-of-the-art on EVT modeling in Integrated Risk Management (also see Reiss and Thomas, 2001, and Coles, 2001, for very readable discussions).

The traditional approach to EVT is based on extreme value limit distributions. Here, a model for extreme losses, say, is based on the possible parametric form of the limit distributions of maxima over independent and identically distributed (i.i.d.) (or weakly dependent) data (see, for instance, Embrechts, Kluppelberg, and Mikosch, 1997, p. 121). For a complete discussion concerning possible dependencies on the data we refer to Coles (2001, Chapter 5). Another model is based on a so-called point process characterization. The resulting Peaks Over Threshold (POT) method appears more flexible and it considers exceedances over a threshold u. For a pictorial presentation of the POT method (see Figure 1). In Figure 1, [Z.sub.1], ..., [Z.sub.q] denote the ground up losses (say), u a (typically high) threshold, n the number of exceedances by [Z.sub.1], ..., [Z.sub.q] of the level u, and [W.sub.1], ..., [W.sub.n] the corresponding excesses (loss exceeding u minus u). The level u may, for instance, correspond to the attachment point or the lower level of an excess-of-loss reinsurance treaty; within finance, u could stand for a VaR number when managing market risk or a stress loss value within credit risk. A further example would correspond to larger operational losses [W.sub.1], ..., [W.sub.n] above a threshold u. For the latter, see Cruz (2002, Chapter 4). Mathematical theory (see Leadbetter, 1991) supports the condition of a possibly inhomogeneous Poisson process with intensity [lambda] for the number of exceedances combined with independent excesses W over the threshold. Given u, the excesses are treated as a random sample from the generalized Pareto distribution (GPD), with scale parameter [sigma] and shape parameter [kappa] (see (1) in "The Description of the Methodology" for the basic definitions).


An additional advantage of the threshold method over the method of annual maxima is that, since each exceedance is associated with a specific event, it is possible to let the scale and shape parameters depend on covariates.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Cite this article

Cited article

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

Smooth Extremal Models in Finance and Insurance


Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?