Causal Inference with General Treatment Regimes: Generalizing the Propensity Score

By Imai, Kosuke; van Dyk, David A. | Journal of the American Statistical Association, September 2004 | Go to article overview
Save to active project

Causal Inference with General Treatment Regimes: Generalizing the Propensity Score


Imai, Kosuke, van Dyk, David A., Journal of the American Statistical Association


1. INTRODUCTION

Establishing the effect of a treatment that is not randomly assigned is a common goal in empirical research. But the lack of random assignment means that groups with different levels of the treatment variable can systematically differ in important ways other than the observed treatment. Because these differences may exhibit complex correlations with the outcome variable, ascertaining the causal effect of the treatment may be difficult. It is in this setting that the propensity score of Rosenbaum and Rubin (1983b) has found wide applicability in empirical research; in particular, the method has rapidly become popular in the social sciences (e.g., Heckman, Ichimura, and Todd 1998; Lechner 1999; Imai 2004).

The propensity score aims to control for differences between the treatment groups when the treatment is binary; it is defined as the conditional probability of assignment to the treatment group given a set of observed pretreatment variables. Under the assumption of strongly ignorable treatment assignment, multivariate adjustment methods based on the propensity score have the desirable property of effectively reducing the bias that frequently arises in observational studies. In fact, there exists empirical evidence that in certain situations the propensity score method produces more reliable estimates of causal effects than other estimation methods (e.g., Dehejia and Wahba 1999; Imai 2004).

The propensity score is called a balancing score because, conditional on the propensity score, the binary treatment assignment and the observed covariates are independent (Rosenbaum and Rubin 1983b). If we further assume the conditional independence between treatment assignment and potential outcomes given the observed covariates, then it is possible to obtain unbiased estimates of treatment effects. In practice, matching or subclassification is used to adjust for the estimated propensity score, which is ordinarily generated by logistic regression (Rosenbaum and Rubin 1984, 1985). The advantage of using estimated propensity scores in place of true propensity scores has been discussed at length in the literature (e.g., Rosenbaum 1987; Robins, Rotnitzky, and Zhao 1995; Rubin and Thomas 1996; Heckmen et al. 1998; Hirano, Imbens, and Ridder 2003); see also Section 5.3. Indeed, even in randomized experiments where the randomization scheme specifies the true propensity score, adjusting for the estimated propensity score can reduce the variance of the estimated treatment effect. One of the principle advantages of this method is that adjusting for the propensity score amounts to matching or subclassifying on a scalar, which is significantly easier than matching or subclassifying on many covariates.

In this article we extend and generalize the propensity score method so that it can be applied to arbitrary treatment regimes. The original propensity score was developed to estimate the causal effects of a binary treatment; however, in many observational studies, the treatment may not be binary or even categorical. For example, in clinical trials, one may be interested in estimating the dose-response function where the drug dose may take on a continuum of values (e.g., Efron and Feldman 1991). Alternatively, the treatment may be ordinal. In economics, an important quantity of interest is the effect of schooling on wages, where schooling is measured as years of education in school (e.g., Card 1995). The treatment can also consist of multiple factors and their interactions. In political science, one may be interested in the combined effects of different voter mobilization strategies, such as phone calls and door-to-door visits (e.g., Gerber and Green 2000). Treatment can also be measured in terms of frequency and duration, for example, the health effects of smoking. These examples illustrate the need to extend the propensity score, a prominent methodology of causal inference, for application to general treatment regimes.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Causal Inference with General Treatment Regimes: Generalizing the Propensity Score
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.