Climate Forecast Maps as a Communication and Decision-Support Tool: An Empirical Test with Prospective Policy Makers

By Ishikawa, Toru; Barnston, Anthony G. et al. | Cartography and Geographic Information Science, January 2005 | Go to article overview

Climate Forecast Maps as a Communication and Decision-Support Tool: An Empirical Test with Prospective Policy Makers


Ishikawa, Toru, Barnston, Anthony G., Kastens, Kim A., Louchouarn, Patrick, Ropelewski, Chester F., Cartography and Geographic Information Science


Introduction

Since antiquity, people have been using maps to represent space. By doing so, one can "look at" and think about the represented space while not actually standing within that space. On a map, one can record and organize information about the represented space at a reduced scale, thus making it possible to think about regions impossible to view in their entirety from any single vantage point. And, importantly for this study, one can communicate information about the represented space to another human being.

In this paper, we examine communication issues concerning climate forecasts, using currently issued forecast maps targeted to a broad spectrum of decision makers, including agricultural and environmental policy makers. Climate forecast maps differ from the more studied weather maps (Monmonier 2000), in that the forecast looks months to seasons into the future, rather than hours to days, and thus incorporates a greater degree of uncertainty. Climate has long been of major concern due to its potential impact on people's activities. Researchers have been attempting to offer seasonal or inter-annual climate forecasts several months ahead of time, so that people can make important decisions that are sensitive to future climate conditions (e.g., grain production, water management, natural disaster control). Climate prediction skills have advanced in the last few decades, especially since the success of an experimental, model-derived prediction of El Nino in the late 1980s (Cane et al. 1986; see also Goddard et al. 2001 for a review of the current state of prediction efforts).

Current climate prediction models are generally based on the El Nino-Southern Oscillation (ENSO), which refers to shifts in sea surface temperatures in the equatorial Pacific and related shifts in barometric pressure gradients and wind patterns in the tropical Pacific. Researchers have shown that ENSO activity has a large global impact on inter-annual climate variability and, importantly for this study, that it is highly correlated with agricultural production. For example, Cane et al. (1994) showed that more than 60 percent of variance in maize yield in Zimbabwe was explained by an index of ENSO, and that model-derived predictions of ENSO provided fairly accurate forecasts of maize yield. Other researchers have also discussed potential benefits of climate forecasts to agriculture, at various parts of the world and at various scales (e.g., Hammer et al. 2001; Hansen 2002; Jones et al. 2000).

Such potential benefits of climate forecasts, however, cannot be fully realized unless people understand and use climate forecasts appropriately. Some researchers discussed the difficulty that people have in interpreting and applying climate forecasts in practice and argued for the necessity of systematically examining communication issues about climate forecasts so that people can take advantage of their potential benefits (e.g., Nicholls 1999; Pfaff et al. 1999). We consider two possible sources of difficulty in understanding climate forecasts: (a) the probabilistic nature of climate forecasts and (b) the complex presentation formats of current forecast products.

First, in climate prediction, it is not possible to offer a deterministic forecast; instead, forecasts are currently given as probabilities of predicted precipitation and temperature for specific regions falling into the upper, middle, and lower one-third in the past years' database for the regions. There is an extensive literature on human understanding of probabilities and decision-making under uncertainty (e.g., Kahneman et al. 1982), which shows that people do have difficulty understanding probabilities. For instance, people make probability judgments on the basis of heuristics, such as "representativeness" and "availability," which lead to serious biases (Tversky and Kahneman 1974). And people (not only laypersons but also professionals such as physicians) tend to make errors in statistical reasoning, particularly neglecting base rates in Bayesian inference problems (Eddy 1982; Tversky and Kahneman 1982). …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Climate Forecast Maps as a Communication and Decision-Support Tool: An Empirical Test with Prospective Policy Makers
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.