Cubic Map Algebra Functions for Spatio-Temporal Analysis

By Mennis, Jeremy; Viger, Roland et al. | Cartography and Geographic Information Science, January 2005 | Go to article overview

Cubic Map Algebra Functions for Spatio-Temporal Analysis


Mennis, Jeremy, Viger, Roland, Tomlin, C. Dana, Cartography and Geographic Information Science


Introduction

The term "map algebra" was first introduced in the late 1970s (Tomlin and Berry 1979) and has since been used in loose reference to a set of conventions, capabilities, and analytical techniques that have been widely adopted for raster-based geographic information systems (GIS) (Tomlin 1990; 1991). Map algebra attempts to accommodate a wide variety of GIS applications in a clear and consistent manner by decomposing data, data processing capabilities, and data processing control techniques into elemental components that can then be recomposed with both ease and flexibility. The resulting algebra-like language is one in which single-factor map layers are treated as variables that can be transformed or combined into new variables by way of primitive operations invoked through expressions conforming to a well defined syntax. Map algebra has been incorporated in many GIS and remote sensing image processing packages, and it has been extended in areas ranging from cellular automata (Takeyama and Couclelis 1997) to environmental modeling (van Deursen 1995; Hofierka and Neteler 2001; Pullar 2001) to topographic analysis (Caldwell 2000). It is widely recognized as one of the most influential analytical frameworks for GIS-based raster data handling (Longley et al. 2001; DeMers 2003).

Like most of the analytical frameworks embodied in current GIS packages, map algebra is primarily oriented toward data that are static. Each layer is associated with a particular moment or period of time, and analytical capabilities are intended to deal with spatial relationships. In its original form, map algebra was never intended to handle spatial data with a temporal component. However, as the availability of spatio-temporal data has increased dramatically in recent years due to the growth of satellite remote sensing and other technologies, and as the sophistication of things such as video games and animation in the motion picture industry has raised popular expectations for spatio-temporal processing capabilities there has also been an increasing demand for the spatio-temporal extension of GIS.

One of the reasons for the widespread adoption of conventional map algebra for raster processing in GIS is its simple syntax and the ability to string together multiple functions to create more complex models. These features provide a simple yet powerful toolbox for raster data manipulation analysis. The inclusion of a library of temporal map algebra functions in GIS packages would be just as useful and facile for analyzing the multitude of spatio-temporal raster data now being generated. We note that despite the growing volume of research on spatio-temporal data models over the past dozen or so years (e.g., Langran 1992; Peuquet 2001), the extension of map algebra to the temporal dimension has been largely ignored by the spatio-temporal GIS research community. The present research is intended as a first step toward the development of such a temporal map algebra library by providing a conceptual foundation for temporal map algebra and the implementation of a select set of map algebra functions that may be applied to spatio-temporal data.

In the following section a framework for the extension of map algebra to the temporal dimension is described. This design is then demonstrated through a prototype implementation of certain temporal map algebra functions which we call "cube functions." Whereas conventional map algebra functions operate on data layers representing two-dimensional space, cube functions operate on data cubes representing two-dimensional space over a third-dimensional period of time. A case study is used to demonstrate how cube functions can be utilized. This case study analyzes the spatio-temporal variability of remotely sensed, southeastern U.S. vegetation character over various land covers and during different El Nino/ Southern Oscillation (ENSO) phases.

Motivation

A variety of approaches for storing and analyzing spatio-temporal data in GIS have been proposed and implemented (cf. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Cubic Map Algebra Functions for Spatio-Temporal Analysis
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.