Harnessing Nanotechnology to Improve Global Equity: The Less Industrialized Countries Are Eager to Play an Early Role in Developing This Technology; the Global Community Should Help Them

By Singer, Peter A.; Salamanca-Buentello, Fabio et al. | Issues in Science and Technology, Summer 2005 | Go to article overview

Harnessing Nanotechnology to Improve Global Equity: The Less Industrialized Countries Are Eager to Play an Early Role in Developing This Technology; the Global Community Should Help Them


Singer, Peter A., Salamanca-Buentello, Fabio, Daar, Abdallah S., Issues in Science and Technology


Developing countries usually find themselves on the sidelines watching the excitement of technological innovation. The wealthy industrialized nations typically dominate the development, production, and use of new technologies. But many developing countries are poised to rewrite the script in nanotechnology. They see the potential for nanotechnology to meet several needs of particular value to the developing world and seek a leading role for themselves in the development, use, and marketing of these technologies. As the next major technology wave, nanotechnology will be revolutionary in a social and economic as well as a scientific and technological sense.

Developing countries are already aware that nanotechnology can be applied to many of their pressing problems, and they realize that the industrialized countries will not place these applications at the top of their to-do list. The only way to be certain that their needs are addressed is for less industrialized nations themselves to take the lead in developing those applications. In fact, many of these countries have already begun to do so. The wealthy nations should see this activity as a potential catalyst for the type of innovative research and economic development sorely needed in these countries. Strategic help from the developed world could have a powerful impact on the success of this effort. Planning this assistance should begin with an understanding of developing-country technology needs and knowledge of the impressive R & D efforts that are already under way.

To provide strategic focus to nanotechnology efforts, we recently carried out a study using a modified version of the Delphi method and worked with a panel of 63 international experts, 60 percent of whom were from developing countries, to identify and rank the 10 applications of nanotechnology most likely to benefit the less industrialized nations in the next 10 years. The panelists were asked to consider impact, burden, appropriateness, feasibility, knowledge gaps, and indirect benefits of each application proposed. Our results, shown in Table 1, show a high degree of consensus with regard to the top four applications: All of the panelists cited at least one of the top four applications in their personal top-four rankings, with the majority citing at least three.

To further assess the impact of nanotechnology on sustainable development, we asked ourselves how well these nanotechnology opportunities matched up with the eight United Nations (UN) Millennium Development Goals, which aim to promote human development and encourage social and economic sustainability. We found that nanotechnology can make a significant contribution to five of the eight goals: eradicating extreme poverty and hunger; ensuring environmental sustainability; reducing child mortality; improving maternal health; and combating AIDS, malaria, and other diseases. A detailed look at how nanotechnology could be beneficial in the three most commonly mentioned areas is illustrative.

Energy storage, production, and conversion. The growing world population needs cheap noncontaminating sources of energy. Nanotechnology has the potential to provide cleaner, more affordable, more efficient, and more reliable ways to harness renewable resources. The rational use of nanotechnology can help developing countries to move toward energy self-sufficiency, while simultaneously reducing dependence on nonrenewable, contaminating energy sources such as fossil fuels. Because there is plenty of sunlight in most developing countries, solar energy is an obvious source to consider. Solar cells convert light into electric energy, but current materials and technology for these cells are expensive and inefficient in making this conversion. Nanostructured materials such as quantum dots and carbon nanotubes are being used for a new generation of more efficient and inexpensive solar cells. Efficient solar-derived energy could be used to power the electrolysis of water to produce hydrogen, a potential source of clean energy. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Harnessing Nanotechnology to Improve Global Equity: The Less Industrialized Countries Are Eager to Play an Early Role in Developing This Technology; the Global Community Should Help Them
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.