An Approach to Evaluation of the Effect of Bioremediation on Biological Activity of Environmental Contaminants: Dechlorination of Polychlorinated Biphenyls

By Ganey, Patricia E.; Boyd, Steven A. | Environmental Health Perspectives, February 2005 | Go to article overview

An Approach to Evaluation of the Effect of Bioremediation on Biological Activity of Environmental Contaminants: Dechlorination of Polychlorinated Biphenyls


Ganey, Patricia E., Boyd, Steven A., Environmental Health Perspectives


The effectiveness of bioremediation efforts is assessed traditionally from the loss of the chemical of interest. In some cases, analytical techniques are coupled with evaluation of toxicity to organisms representative of those found in the affected environment or surrogate organisms. Little is known, however, about the effect of remediation of environmental chemicals on potential toxicity to mammalian organisms. We discuss both an approach that employs mammalian cell system bioassays and the criteria for selection of the assays. This approach has been used to evaluate the biological response to mixtures of polychlorinated biphenyls (PCBs) before and after remediation by reductive dechlorination. The dechlorination process used results in accumulation of congeners substituted in only the ortho and para positions and containing fewer chlorines than the starting mixtures. Evaluation of the dechlorinated mixture reveals a loss of biological activity that could be ascribed to coplanar PCBs not containing chlorine in the ortho positions. Conversely, biological activity associated with ortho-substituted PCB congeners is unaffected or increased by remediation. Thus, the results of the bioassays are consistent with the remediation-induced change in the profile of PCB congeners and the known mechanisms of action of PCBs. The results emphasize a need for evaluation of the products of remediation for biological activity in mammalian systems. Furthermore, the approach outlined demonstrates the potential to assess the impact of remediation on a range of biological activities in mammalian cells and thus to estimate positive and negative effects of remediation strategies on toxicity. Future needs in this area of research include assays to evaluate biological effects under conditions of exposure that mimic those found in the environment and models to extrapolate effects to assess risk to people and wildlife. Key words: bioassay, cytochrome P450, dechlorination, insulin, in vitro fertilization, neutrophil, PCB, transcription, uterine contraction. doi:10.1289/ehp.6935 available via http://dx.doi.org/[Online 9 December 2004]

**********

Biological remediation technologies offer the advantage of partial or complete destruction of contaminants within a site. The ultimate goal of remediation is conversion of toxic organic contaminants to simple, less-toxic constituents, although for some chemicals, incomplete conversion occurs and stable intermediates are formed. The effectiveness of remediation strategies is traditionally evaluated from the disappearance of the chemical of interest. This approach does not consider that end products or intermediates produced during remediation may be toxic. Furthermore, the potential exists that remediation may result in products for which the toxic response is greater than for the parent compound or for which the target of toxicity is different, and these possibilities would not be detected. Accordingly, from the standpoint of assessing risk, it is important to understand the biological activity or toxicity of the end products and stable intermediates. Thus, the question becomes, Are the products or intermediates of bioremediation less toxic than the starting materials?

The anticipated answer to this question is yes; however, there is a dearth of evidence to support this assumption, particularly with respect to effects on mammalian systems. There are some reports of decreased toxic effects after remediation of contaminants, using mammalian systems to evaluate toxicity (Mousa et al. 1996, 1998; Quensen et al. 1998). On the other hand, some evidence suggests that products formed during remediation or breakdown of environmental chemicals have greater biological activity than the starting materials. For example, DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene], a major environmental transformation product of DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane], is a more potent androgen receptor antagonist than its parent compound (Kelce et al. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

An Approach to Evaluation of the Effect of Bioremediation on Biological Activity of Environmental Contaminants: Dechlorination of Polychlorinated Biphenyls
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.