Automating the Forensic Analysis of Nuclear DNA: The FBI's Research and Development Initiative

Forensic Science Communications, October 2004 | Go to article overview

Automating the Forensic Analysis of Nuclear DNA: The FBI's Research and Development Initiative


Introduction

In the United States, there is a substantial backlog of samples requiring short tandem repeat (STR) DNA marker analysis. Approximately 200,000 to 300,000 collected convicted offender samples (U.S. Department of Justice 2003) and more than 540,000 evidentiary samples where there is no suspect (Attorney General's Report on the DNA Evidence Backlog 2004) currently remain to be analyzed nationwide. Additionally, 500,000 to 1,000,000 authorized convicted offender samples have not yet been collected (U.S. Department of Justice 2003).

[FIGURE 1 OMITTED]

To address this issue, Public Law 106-546, DNA Analysis Backlog Elimination Act of 2000, was enacted on December 21, 2000. This law authorized $170,000,000 toward reducing the backlog (DNA Analysis Backlog Elimination Act of 2000).

* $15,000,000 was appropriated in 2001 through 2003 for DNA analysis of samples to be included in the Combined DNA Index System (CODIS), the nationwide DNA database.

* $25,000,000 to $50,000,000 was appropriated in 2001 through 2004 for DNA analysis of samples from crime scenes and to increase the capability of public laboratories to carry out DNA analyses.

The intent of this spending was to eliminate the backlog of samples requiring STR DNA analysis by providing additional manpower and instrumentation for use with existing nuclear DNA analysis technologies.

Although existing nuclear DNA analysis technologies are valid and accurate, they are also labor-intensive and time-consuming. Introducing automation into the process flow for analysis of forensic biological samples would overcome the backlog problem and prevent its recurrence.

Identification of probative biological samples, the technical steps for typing the 13 core CODIS STR loci, and the interpretation of STR-analytical results and associated data quality review could all be automated. This would assist in achieving process quality and reproducibility.

During 2000 in support of the backlog reduction efforts, the FBI's Counterterrorism and Forensic Science Research Unit designed a research and development plan for automating the forensic analysis of biological evidence, which was funded by Congress in 2001. The FBI automation initiative is divided into three main areas--serology, the STR-typing process, and online data interpretation and quality assessment tools.

Serology

The goals for the serology initiative are to develop methods for the definitive identification of all forensically relevant biological stains and to automate the execution of these methods. Currently, biological samples deposited at crime scenes are identified by visual inspection, chemical reactions, enzymatic reactions, and standard immunological methods.

[FIGURE 2 OMITTED]

Both a presumptive test and a confirmatory test are performed in the process, and these tests are conducted sequentially, requiring a new sample for each test (Ballantyne 2000). However, definitive tests do not exist for each of the frequently encountered body fluids (e.g., saliva or urine). Operational efficiency could be improved if a system existed whereby a complete panel of body fluid identification tests was performed simultaneously from a single sample (i.e., multiplexed analysis), and the identification system was amenable to automation.

The FBI recently initiated a project to develop a multiplexed immunoassay to identify forensically relevant body fluids. Novel antigens not previously used in forensic analysis will be interrogated using monoclonal antibodies, the most specific immunological reagents available.

The immunoassays will first be developed in a format suitable for individual high-throughput automation on a robotic liquid handler. Subsequently, the individual assays will be multiplexed and adapted to an as yet undecided detection platform. One possibility is a suspension array based on flow cytometry (Kellar and Iannone 2002; Nolan and Mandy 2001).

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Automating the Forensic Analysis of Nuclear DNA: The FBI's Research and Development Initiative
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.