Combining Cooperative Learning and Multimedia in General Chemistry

By Pence, Harry E. | Education, Spring 1993 | Go to article overview
Save to active project

Combining Cooperative Learning and Multimedia in General Chemistry


Pence, Harry E., Education


On the national level, several factors have recently combined to cause a re-evaluation of the instructional methods used for introductory science courses. Critics such as Sheila Tobias (1990) have argued that current instructional approaches unnecessarily discourage interest in science by women and members of minority groups. The technology required for combining sound, animation, and video images in a multimedia lecture format has become available in forms which require only modest investments of time and money. Cooperative learning methods have become better understood and more widely used. Finally, improved understanding of the learning process has suggested new ways to integrate all of these developments into a coherent, effective educational approach. Each of these developments has affected the project described in this article.

Introduction

These national trends have been reinforced by certain developments at SUNY Oneonta. Declining numbers of majors, decreased student performance (at least as indicated by some measures), and the desire to make science more accessible to women and minorities have prompted the exploration of new teaching techniques.

A major stimulus for change was the expectation that using more visual imagery in class would help to improve the student's observational ability and proficiency at visualizing chemical principles. This skill is extremely important for chemists, since the level of professional development in this field is closely related to the sophistication of the mental imagery which is used (Kleinman 1987).

In addition, seeing the principles demonstrated in class should make it easier for students to understand the connection between problem solving and physical concepts. There is considerable research indicating that many students in introductory physical science courses fail to see a relationship between problem solving and the physical principles upon which problems are based. There are various names for this problem, means-ends analysis (Larkin, 1980) or the Roladex approach (Bunce, 1991), but the research indicates students focus predominantly on manipulation of the symbols to produce the required answer without referring to the physical principles upon which the problem is based.

The traditional method of showing physical concepts in chemistry classes is lecture demonstrations, but several recent developments deter this practice. Liability questions discourage the use of demonstrations that offer any risk; increased teaching loads and the desire to cover more topics in the introductory course leave less time to set up and perform demonstrations, and the size of many classes is so large that many important reactions are too small to be easily seen.

Some have sought to solve the problem by totally substituting multimedia presentations for the lecture, but these efforts have not always been successful. For example, a recent attempt to use microcomputers to teach organic chemistry (Casanova 1991) found that student involvement and interest was increased, but students taught in a conventional fashion still performed better on examinations. The reason for this is not clear. It may have been that students had to absorb a greater amount of data during a multimedia presentation, or it may have been that approach made it too easy for them to become passive participants, who failed to assimilate the information presented.

This paper describes a project which combines several different educational methods. First, the visual imagery was integrated into a traditional lecture format, so students had clear guidance to help unify the various components. Second, the students used cooperative learning techniques to explore what they had seen, arrive at observational generalizations, and make predictions. This combination of lecture, multimedia, and cooperative learning was both popular with the students and seemed to create a productive learning environment.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

Combining Cooperative Learning and Multimedia in General Chemistry
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?