Logic Circuits and the Quality of Life: The Applications of Logic Circuits Are Countless

By Childress, Vincent W. | The Technology Teacher, February 2006 | Go to article overview

Logic Circuits and the Quality of Life: The Applications of Logic Circuits Are Countless


Childress, Vincent W., The Technology Teacher


Introduction

With the flooding of New Orleans in the wake of Hurricane Katrina, people around the world became all too aware of human dependency on technology to manage the forces of nature and maintain a high quality of life. New Orleans' sewage and water control systems depend on water pumps to move sewage, storm-water runoff, and fresh water around the city. Under normal conditions, when it rains in New Orleans, a city that sits below sea level, massive water pumps are automatically engaged, and rain water is pumped into Lake Pontchartrain, a nearby reservoir. However, when Katrina hit and electrical power to the city was cut, the system failed.

The transport of drinking water is one of the technological marvels that people do not think about until they have to go without. Water systems need several important components in order to operate efficiently, such as pumps and pump motors and reliable automation.

At the heart of the system that automates water pumping is an electronic control circuit. Electronic control circuits are used in a wide variety of applications, from controlling pump motors to making automobiles more safe and efficient. The same technology that forms the essence of this control and automation is also the basic building block of central processing units in computers. This technology is so pervasive in everyday life that it is truly a fundamental of technology that middle school and high school students need to understand.

This technology is known as the binary logic gate.

Logic Control Circuits

Often, logic circuits are interfaced with other devices, such that the electronic circuits control the behavior of the other devices. For example, if there is water present in a storm drain, a water pump should automatically turn on. In order to do this, the logic circuit must be able to tell if water is present. This is accomplished by using sensors. There is a variety of ways to sense the presence of moisture. On some sensors, if water is present, the water changes resistance to electrical current flow. In turn, the sensor device will output a specific level of electrical voltage. It is the sensor's output voltage that becomes the input to the binary logic gate. In this case, if the sensor's output voltage is low (say 0 to 1VDC), then the output is low or zero. If the output voltage is high (say 4.7 to 5 VDC), then the output is high or 1.

Binary logic gates may be thought of as configurations of simple switches (see Tokheim, 2003). Suppose an electrical switch is being used to control a light. When a switch is closed, the light is on. When the switch is open, the light is off. In the world of logic, "on" is represented by 1, and "off" is represented by 0. On/off, 1/0, this is why the gates are referred to as "binary." They work on a base 2 number system like the central processing unit in a computer.

Logic gates are systems within themselves. They receive input. They process that input and change it into an output. When the sensor sends a 1 (or high voltage) to the input of a logic gate, the logic gate processes that input signal into an output. Whether or not the output of the logic gate is a 1 or 0 (high or low) depends on how the logic gate is designed.

In Figure 2, an AND gate has been constructed from simple switches. Only when switch 1 ($1) AND switch 2 ($2) are both closed will the light-emitting diode (LED) illuminate.

[FIGURE 2 OMITTED]

Two conditions must be met before the device being controlled can be turned on. There must be moisture present AND the water valve leading to the reservoir must be open before the pump will turn on. In the truth table for the AND gate, notice the inputs (A and B). If any input is 0 (low), then the output will remain 0 (low). Only when both inputs are 1 (high) will the output be 1 (high). That is the condition under which the logic control circuit will cause the device (such as a water pump) to be turned on. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Logic Circuits and the Quality of Life: The Applications of Logic Circuits Are Countless
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.