Comparative Analysis of Frameworks for Knowledge-Intensive Intelligent Agents

By Jones, Randolph M.; Wray, Robert E. | AI Magazine, Summer 2006 | Go to article overview

Comparative Analysis of Frameworks for Knowledge-Intensive Intelligent Agents


Jones, Randolph M., Wray, Robert E., AI Magazine


Overview

One frequently taken approach toward b achieving human-level intelligent systems is to create foundational software systems that tightly integrate some number of representations and processes deemed sufficient for generating automated intelligent behavior. The design of these foundational software systems, which include both cognitive and agent architectures, have generally been based on some small set of theoretical principles. The agent architecture is an attempt to foster the development of uniform approaches for building intelligent systems. However, large-scale integrated software systems that attempt to approach human levels of intelligence through agent architectures exhibit some core commonalities across different architectures. For example, no matter the chosen architecture, there is a necessity for such systems to encode vast amounts of knowledge in efficient, organized, and maintainable ways. Additionally, these knowledge requirements have had relatively uniform effects on the evolution of these architectures, such that we observe a convergence of essential representations and processes across agent architectures.

A variety of frameworks currently exist for designing human-level intelligent agents and behavior models. Although they have different emphases, each of these frameworks provides coherent, high-level views of intelligent agency. However, more pragmatically, much of the complexity of building intelligent agents occurs in the low-level details, especially when building agents that exhibit high degrees of competence while interacting in complex environments. To highlight the emphasis of our observations about the knowledge necessary for human-level artificial intelligence, we call such agents knowledge-intensive agents. This term is also meant to distinguish such agents from smaller-scale, single-task agents (for example, service brokers) that are often fielded in multi-agent systems. Examples of fielded knowledge-intensive agents include a real-time fault diagnosis system on the Space Shuttle (Georgeff and Ingrand 1990) and a real-time model of combat pilots (Jones, Laird, and Nielsen 1999). Knowledge-intensive agents are also often used in "long-life" situations, where a particular agent needs to behave appropriately and maintain awareness of its environment for a long period of time (hours to days) while performing many different activities during the span of its existence. Additionally, knowledge-intensive agents must be engineered such that their knowledge can be easily modified (possibly by both extrinsic and intrinsic processes) as environment and task requirements change during deployment.

Transfer and generalization of results from one framework to others is usually slow and limited. The reasons for such limited transfer include differences in nomenclature and methodology that make it more difficult to understand and apply results, and the necessity of specifying low-level details that are not prescribed by the frameworks but that become important in actual implementation. In addition, high-level agent frameworks do not usually guide the agent developer in many finer-grained implementation issues, meaning that the frameworks underspecify necessary principles to build and field working intelligent agents. Our goal is to develop techniques that will minimize framework-specific descriptions and that bridge the gap between a framework's theory and the details of its implementation, especially clarifying which details are intrinsic to particular approaches and which are not. In the long run, this effort should foster reuse of architectural components and idioms across architectures as well as across individual agent models that use a single architecture.

This article reviews four existing agent frameworks in order to explore what they specify (and do not) about an agent's design and construction. The chosen frameworks have proven successful for building knowledge-intensive agents of various levels of complexity, or specifically address constraints on agents with high levels of competence (such as human behavior models). …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Comparative Analysis of Frameworks for Knowledge-Intensive Intelligent Agents
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.