Prolactin Changes as a Consequence of Chemical Exposure

By Alessio, Lorenzo; Lucchini, Roberto | Environmental Health Perspectives, October 2006 | Go to article overview

Prolactin Changes as a Consequence of Chemical Exposure


Alessio, Lorenzo, Lucchini, Roberto, Environmental Health Perspectives


We read with great interest the article by de Burbure et al. (2006) on health effects in children who live near nonferrous smelters in France, the Czech Republic, and Poland. We were especially interested in the inverse relationship found between levels of urinary mercury and serum prolactin. We found a similar result in an Italian multicenter crosssectional survey with adult subjects (Alessio et al. 2002) using a different statistical approach based on regression analysis with mixed linear models. We found that serum prolactin decreased as a function of both urinary mercury and occupational exposure to inorganic mercury (Lucchini et al. 2003). In another study (Carta et al. 2003), our group observed the opposite behavior of prolactin in adult individuals with a high dietary intake of mercury-contaminated tuna. In that study, serum prolactin was positively associated with urinary and blood mercury. Our interpretation of this dual behavior was that prolactin may be differently affected by inorganic and organic mercury based on the interference with different neurotransmitters implicated in the regulation of prolactin secretion (Carta et al. 2003).

The article by de Burbure et al. (2006) stimulates futher consideration of the observed effects on serum prolactin after exposure to various metals and other chemical substances. In fact, prolactin can be increased by exposure to lead (Govoni et al. 1987; Lucchini et al. 2000), organic mercury (Carta et al. 2003), and manganese (Ellingsen et al. 2003; Smargiassi and Mutti 1999; Takser et al. 2004), but it can be decreased by exposure to inorganic mercury (de Burbure et al. 2006; Lucchini et al. 2003; Ramalingam et al. 2003), alluminum (Alessio et al. 1989), and cadmium (Calderoni et al. 2005; de Burbure et al. 2006). Subjects exposed to chemicals such as styrene (Bergamaschi et al. 1996; Luderer et al. 2004; Umemura et al. 2005), per-chloroethylene (Beliles 2002; Ferroni 1992), and anesthetic gases (Lucchini et al. 1996; (Marana et al. 2003) have shown an increase of serum prolactin, whereas polychlorinated biphenyls (De Krey et al. 1994) and the pesticide lutheinate [U.S. Environmental Protection Agency (EPA) 2002] are known to decrease serum prolactin.

Possible mechanisms, other than direct effects at the cellular level, may be related to different neurotransmitters involved in the modulation of prolactin secretion. For example, the dopaminergic and serotoninergic systems, respectively, are involved in the physiologic regulation of this hormone as a tonic inhibitor and as an excitatory modulator. Different chemicals may interfere with these two systems, resulting in different outcomes regarding serum prolactin. Recent studies have shown that the same chemical may even cause different effects on prolactin depending on the exposure doses (Lafuente et al. 2003).

We would like to know why this neuro-endocrine hormone is affected differently by exposure to different chemicals. This is important because of the possible use of prolactin, as described by de Burbure et al. (2006), as a sensitive indicator of early effects in toxicologic research and risk assessment (Mutti and Smargiassi 1998). Negative studies have also been published on the association of prolactin with the exposure to neurotoxicants (Myers et al. 2003; Roels et al. 1992). Therefore, it is vital to assess the causes of the variability that may limit the reproducibility of these tests. Further research should focus on multiple exposure to different chemicals, which may help to explain the lack of association.

The authors declare they have no competing financial interests.

Lorenzo Alessio

Roberto Lucchini

Institute of Occupational Health

University of Brescia

Brescia, Italy

E-mail: lucchini@med.unibs.it

REFERENCES

Alessio L, Apostoli P, Cortesi I, Lucchini R, eds. 2002. Assessment of Effects Due to Low Doses of Inorganic Mercury Following Environmental and Occupational Exposure: Human and in Vitro Studies on Specific Toxicity Mechanisms. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Prolactin Changes as a Consequence of Chemical Exposure
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.