Organophosphate Insecticides Target the Serotonergic System in Developing Rat Brain Regions: Disparate Effects of Diazinon and Parathion at Doses Spanning the Threshold for Cholinesterase Inhibition

By Slotkin, Theodore A.; Tate, Charlotte A. et al. | Environmental Health Perspectives, October 2006 | Go to article overview
Save to active project

Organophosphate Insecticides Target the Serotonergic System in Developing Rat Brain Regions: Disparate Effects of Diazinon and Parathion at Doses Spanning the Threshold for Cholinesterase Inhibition


Slotkin, Theodore A., Tate, Charlotte A., Ryde, Ian T., Levin, Edward D., Seidler, Frederic J., Environmental Health Perspectives


BACKGROUND: In the developing brain, serotonin (5HT) systems are among the most sensitive to disruption by organophosphates.

OBJECTIVES: We exposed neonatal rats to daily doses of diazinon or parathion on postnatal days (PND)1-4 and evaluated 5HT receptors and the 5HT transporter in brainstem and forebrain on PND5, focusing on doses of each agent below the maximum tolerated dose and spanning the threshold for cholinesterase inhibition: 0.5, 1, or 2 mg/kg for diazinon, and 0.02, 0.05, and 0.1 mg/kg for parathion.

RESULTS: Diazinon evoked up-regulation of 5H[T.sub.1A] and 5H[T.sub.2] receptor expression even at doses devoid of effects on cholinesterase activity, a pattern similar to that seen earlier for another organophosphate, chlorpyrifos. In contrast, parathion decreased 5H[T.sub.1A] receptors, again at doses below those required for effects on cholinesterase. The two agents also differed in their effects on the 5HT transporter. Diazinon evoked a decrease in the brainstem and an increase in the forebrain, again similar to that seen for chlorpyrifos; this pattern is typical of damage of nerve terminals and reactive sprouting. Parathion had smaller, nonsignificant effects.

CONCLUSIONS: Our results buttress the idea that, in the developing brain, the various organophosphates target specific neurotransmitter systems differently from each other and without the requirement for cholinesterase inhibition, their supposed common mechanism of action.

KEY WORDS: acetylcholine, brain development, chlorpyrifos, cholinesterase, diazinon, organophosphate insecticides, parathion, serotonin receptors, serotonin transporter. Environ Health Perspect 114:1542-1546 (2006). doi:10.1289/ehp.9337 available via http://dx.doi.org/ [Online 27 July 2006]

**********

Organophosphates are undergoing increasing restrictions on their home use in the United States (U.S. Environmental Protection Agency 2000, 2002), but nonetheless they still account for > 50% of all insecticide use (Casida and Quistad 2004). One of the major concerns for human health is the propensity of these agents to produce developmental neurotoxicity, even when exposures are too low to elicit signs of systemic intoxication (Landrigan 2001; Landrigan et al. 1999; May 2000; Physicians for Social Responsibility 1995; Pope 1999; Slotkin 1999, 2004; Weiss et al. 2004). In that regard, chlorpyrifos has been the most studied organophosphate, and it is now clear that the original view of its mechanism of action--cholinesterase inhibition via its active metabolite, chlorpyrifos oxon--is insufficient to explain its ability to damage the developing brain. In fact, multiple mechanisms target neural cell replication and differentiation, axonogenesis and synaptogenesis, and the development and programming of synaptic activity, culminating in behavioral deficits (Barone et al. 2000; Casida and Quistad 2004; Gupta 2004; Pope 1999; Qiao et al. 2002, 2003; Yanai et al. 2002). There is an important corollary of the compound mechanisms for disruption of brain development: Whereas all organophosphates share actions directed toward cholinesterase, they may differ substantially in many of their noncholinesterase effects, such as actions directed toward oxidative stress, cell signaling, expression and function of nuclear transcription factors, and cell replication and differentiation (Gupta 2004; Pope 1999; Slotkin 1999, 2004, 2005), even if some of those additional mechanisms are shared by various organophosphates (Abu-Qare and Abou-Donia 2001; Morale et al. 1998; Pope 1999; Qiao et al. 2001; Slotkin 1999, 2004; Slotkin et al. 2006; Whyatt et al. 2002).

In a recent study (Slotkin et al. 2006), we compared the dose-effect relationships for systemic toxicity and developmental neurotoxicity for chlorpyrifos, diazinon, and parathion. Although parathion exhibited the highest systemic toxicity, it was actually less neurotoxic toward neurite formation and development of cholinergic projections, whereas diazinon and chlorpyrifos were less systemically toxic and more neurotoxic.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

Organophosphate Insecticides Target the Serotonergic System in Developing Rat Brain Regions: Disparate Effects of Diazinon and Parathion at Doses Spanning the Threshold for Cholinesterase Inhibition
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?