Neural Tube Defects and Folate Pathway Genes: Family-Based Association Tests of Gene-Gene and Gene-Environment Interactions

By Boyles, Abee L.; Billups, Ashley V. et al. | Environmental Health Perspectives, October 2006 | Go to article overview

Neural Tube Defects and Folate Pathway Genes: Family-Based Association Tests of Gene-Gene and Gene-Environment Interactions


Boyles, Abee L., Billups, Ashley V., Deak, Kristen L., Siegel, Deborah G., Mehltretter, Lorraine, Slifer, Susan H., Bassuk, Alexander G., Kessler, John A., Reed, Michael C., Nijhout, H. Frederik, George, Timothy M., Enterline, David S., Gilbert, John R., Speer, Marcy C., Environmental Health Perspectives


BACKGROUND: Folate metabolism pathway genes have been examined for association with neural tube defects (NTDs) because folic acid supplementation reduces the risk of this debilitating birth defect. Most studies addressed these genes individually, often with different populations providing conflicting results.

OBJECTIVES: Our study evaluates several folate pathway genes for association with human NTDs, incorporating an environmental cofactor: maternal folate supplementation.

METHODS: In 304 Caucasian American NTD families with myelomeningocele or anencephaly, we examined 28 polymorphisms in 11 genes: folate receptor 1, folate receptor 2, solute carrier family 19 member 1, transcobalamin II, methylenetetrahydrofolate dehydrogenase 1, serine hydroxymethyltransferase 1, 5,10-methylenetetrahydrofolate reductase (MTHFR), 5-methyltetrahydrofolate-homocysteine methyltransferase, 5-methyltetrahydrofolate-homocysteine methyltransferase reductase, betaine-homocysteine methyltransferase (BHMT), and cystathionine-beta-synthase.

RESULTS: Only single nucleotide polymorphisms (SNPs) in BHMT were significantly associated in the overall data set; this significance was strongest when mothers took folate-containing nutritional supplements before conception. The BHMT SNP rs3733890 was more significant when the data were stratified by preferential transmission of the MTHFR rs1801133 thermolabile T allele from parent to offspring. Other SNPs in folate pathway genes were marginally significant in some analyses when stratified by maternal supplementation, MTHFR, or BHMT allele transmission.

CONCLUSIONS: BHMT rs3733890 is significantly associated in our data set, whereas MTHFR rs1801133 is not a major risk factor. Further investigation of folate and methionine cycle genes will require extensive SNP genotyping and/or resequencing to identify novel variants, inclusion of environmental factors, and investigation of gene-gene interactions in large data sets.

KEY WORDS: folate, folic acid supplementation, genetic association, neural tube defects. Environ Health Perspect 114:1547-1552 (2006). doi:10.1289/ehp.9166 available via http://dx.doi.org/[Online 15 June 2006]

**********

Of 1,000 births worldwide, in one embryo the neural tube will fail to close properly 28 days after conception, resulting in some form of neural tube defect (NTD). Failed closure at the cranial end, known as anencephaly, is a lethal condition, whereas failed closure at the caudal end usually results in a myelomeningocele. NTDs are the most common debilitating birth defect. Familial studies indicate a significant genetic component to NTDs, with a 40-fold increase in risk in first-degree relatives (Elwood et al. 1992). Myriad environmental exposures have been implicated in the development of NTDs; most notably, a significant decrease in risk can be achieved by maternal folic acid supplementation before conception.

The mechanism by which dietary folate supplementation prevents NTDs is poorly understood (MRC Vitamin Study Research Group 1991). Folic acid derivatives are essential for the synthesis of DNA, cell division, tissue growth, and DNA methylation (Morrison et al. 1998). Methylation enables proper gene expression and chromosome structure maintenance, both of which are critical in the developing embryo (Razin and Kantor 2005). The folate and methionine cycles are linked by the conversion of homocysteine to methionine (Figure 1). In the absence of food frequency data, maternal vitamin supplementation can also serve as a proxy for overall health because of the positive correlation between supplement intake, diet, and a healthy lifestyle (Slesinski et al. 1996). Vitamin supplementation is an important cofactor to consider when studying nutritionally related genes.

Animal models demonstrate that periconceptional folate supplementation protects against congenital defects in the face, neural tube, and conotruncal region of the heart.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Neural Tube Defects and Folate Pathway Genes: Family-Based Association Tests of Gene-Gene and Gene-Environment Interactions
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.