Methods of Applied Mathematics: Honors Mathematics 450 and 451 Each 3 Credit Hours

By Bukiet, Bruce; Goodman, Roy | Honors in Practice, Annual 2007 | Go to article overview

Methods of Applied Mathematics: Honors Mathematics 450 and 451 Each 3 Credit Hours


Bukiet, Bruce, Goodman, Roy, Honors in Practice


GENERAL DESCRIPTION

In this course, students perform and analyze physical experiments in the context of an advanced mathematics course. This capstone course integrates the students' experience with mathematical modeling, mathematical analysis, numerical methods, computation, engineering and communication. In the first semester, students have short modules (2-4 weeks) that include relatively simple experiments and numerical simulations. This prepares students for the second semester, when students work in teams to perform and analyze experiments of greater complexity using more advanced mathematical skills. At the end of the second semester, students present their research results both orally and in writing.

FALL SEMESTER

Texts

Haberman, Mathematical Models: Mechanical Vibrations, Population Dynamics and Traffic Flow

Farlow, Partial Differential Equations for Scientists and Engineers

Experimental Apparatus

Vernier LabPro--Data acquisition and analysis software, Accelerometer, Photogates, Temperature probe, Masses, Springs, Pendulum, Cycloid track, Power supply, voltmeter, conductive paper and pens

Syllabus

Unit I: Introduction--Math Modeling, Gravity and Newton's Law of Cooling

Week 1: Review of Differential Equations, Introduction to Mathematical Modeling and Applied Problems

Physical Experiment 1: Newton's Law of Cooling--is the power really 1?

Week 2: Equilibrium and Stability in one dimension (1st order), Newton's Law of Cooling Review vector calculus, Newton's laws, conservative systems

Week 3: Least squares fitting for realistic data

Project 1: Mathematical modeling and Newton's Law of Cooling experiment analysis

Unit II: Mechanics I--The Brachistochrone

Week 4: Calculus of Variations

Week 5: Derivation of the Nonlinear Differential Equation governing the Brachistochrone (Curve for which a ball travels from one point to another in the fastest time under the influence only of gravity), Solution to the Nonlinear Ordinary Differential Equation (Parametric Equations)

Physical Experiment 2: Timing a trajectory: the Brachistochrone vs. the line

Week 6: Tautochrone property of the Solution, Analysis for the line and of the cycloid for different height/length ratios

Project 2: Calculus of variations, Brachistochrone experiment and analysis of the cycloid

Week 7: Review and Midterm and Going over Midterm

Unit III: Mechanics II--Mass-Spring Systems

Week 8: Review Midterm, Second order ODEs and harmonic motion, Dimensional Analysis

Week 9: Derivation and solution of undamped and damped single mass-spring systems

Physical Experiment 3: Single vertical mass-spring setup

Week 10: Phase plane analysis, Double mass-spring system, Non-linear oscillations and the Pendulum

Project 3: Measuring the spring constant, frequency and evaluating linearity of a spring and other mass-spring analysis

Week 11: Linear Stability and Linearization (higher order), Energy Conservation and Energy Curves, Numerical Methods for ODEs Physical Experiment 4: Double mass-spring and its frequencies Project 4: Double mass-spring and its frequencies; how initial conditions influence the dynamics of the double mass-spring; nonlinear springs

Week 12: Phase curves for the damped pendulum, The Spring Pendulum Project + Physical Experiment 5: Timing the pendulum, analysis of the nonlinear pendulum and linearized pendulum equations

Unit IV: Electrostatics and Incompressible Fluids

Week 13: Derivation of Laplace equation for potential flow, Electrostatic potential, Properties of the Laplace equation, Elliptic PDEs

Week 14: Separation of Variables, Solutions in Rectangular and Cylindrically symmetric regions

Week 15: Finite difference methods, Review Physical Experiment 6: Electrostatic Field Mapper experiment Project 6: Analytic and Experimental Solution of Laplace's equation for electrostatics problems (equipotential and flux lines)

Grading Policy

The final grade in this course will be determined as follows:

Homework/Projects: 66%

Midterm and Final Exams: 34%

SPRING SEMESTER

General Description

In the spring semester, students learn more advanced methods from classical mechanics and use them to study problems that have attracted more recent interest: dynamical bias in coin tosses, as shown by Diaconis et al.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Methods of Applied Mathematics: Honors Mathematics 450 and 451 Each 3 Credit Hours
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.