Cellular and Molecular Mechanisms of Drug Dependence: An Overview and Update

By Gupta, Swapnil; Kulhara, Parmananda | Indian Journal of Psychiatry, April-June 2007 | Go to article overview

Cellular and Molecular Mechanisms of Drug Dependence: An Overview and Update


Gupta, Swapnil, Kulhara, Parmananda, Indian Journal of Psychiatry


Byline: Swapnil. Gupta, Parmananda. Kulhara

Drug dependence is a major cause of morbidity and loss of productivity. Various theories ranging from economic to psychological have been invoked in an attempt to explain this condition. With the advent of research at the cellular and subcellular levels, perspectives on the etiology of drug dependence have also changed. Perhaps the greatest advance has been in the identification of specific receptors for each of the drugs, their target neurotransmitter systems and the intracellular changes produced by them. These receptors also provide potential targets for treatment strategies of drug dependence. This overview attempts to present the mechanisms in the development of dependence and the newer treatment strategies for the major drugs of abuse like alcohol, opioids, cannabis, nicotine and cocaine.

Human addictions are chronically relapsing disorders characterized by compulsive drug use, an inability to limit the intake of drugs and the emergence of a withdrawal syndrome during cessation of drug use. Dependence has been defined as a cluster of behavioral, cognitive and physiological phenomena that develop after repeated substance use. It typically includes a strong desire to take the drug, difficulties in controlling its use, persisting in its use despite harmful consequences, a higher priority given to drug use than to other activities and obligations, increased tolerance and sometimes a physical withdrawal state (International Classification of Diseases (ICD)-10).

Cellular biology is defined as the study of the physiology and biochemistry of intracellular processes. Molecular biology is the branch of biology that seeks to explain all biological processes in terms of genes and genetic changes. With the advent of neuroscience as an indispensable branch of biomedical research, there has been explosive growth in the biological understanding of the process of addiction at the cellular and molecular levels. In this update, we have described recent research findings so as to increase awareness regarding these aspects of drug dependence syndromes.

Neurobiology of Addiction

Drug addiction has been conceptualized as a complex and chronic disease process occurring in the brain, which is modulated by genetic, developmental and environmental factors. The most consistent and reproducible finding in drug addiction is that abused substances activate the mesolimbic dopamine system, which reinforces both pharmacological and natural rewards. The mesolimbic system consists of dopaminergic neurons in the ventral tegmental area (VTA) and their axonal projections to terminal fields in the nucleus accumbens (NAc) and the prefrontal cortex.

Opioids, alcohol, nicotine, cannabinoids and psychostimulants all act on this system to increase synaptic levels of dopamine (DA). All these substances have specific receptors in the brain and the increase in dopamine levels in the mesolimbic system is the final effect that they produce. Receptor-mediated activity is the principal mechanism by which any chemical messenger acts. Chemical messengers are regulatory macromolecules, usually proteins. Receptors have two major functions of recognition and transduction. Correspondingly, each receptor has two domains, i.e., a ligand-binding and an effector domain. The ligand-binding domain has a hydrophilic and a lipophilic region and is usually heteropolymeric. The binding of the ligand causes a change in the quaternary structure of the receptor.

Receptors have various effector mechanisms, which are broadly of four types:

*G protein-coupled receptors (Gs, Gi, Gq and G13) *Receptors with intrinsic ion channels *Enzymatic receptors *Receptors regulating gene expression

One of the most dramatic advances in drug abuse research has been the identification of the target of every major drug of abuse. This advance occurred with the advent of radioligand-binding techniques, the biochemical characterization of drug binding sites and ultimately, with the application of molecular biology to clone and isolate these structures. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Cellular and Molecular Mechanisms of Drug Dependence: An Overview and Update
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.