Identification of Genes Implicated in Methapyrilene-Induced Hepatotoxicity by Comparing Differential Gene Expression in Target and Nontarget Tissue

By Auman, J. Todd; Chou, Jeff et al. | Environmental Health Perspectives, April 2007 | Go to article overview

Identification of Genes Implicated in Methapyrilene-Induced Hepatotoxicity by Comparing Differential Gene Expression in Target and Nontarget Tissue


Auman, J. Todd, Chou, Jeff, Gerrish, Kevin, Huang, Qihong, Jayadev, Supriya, Blanchard, Kerry, Paules, Richard S., Environmental Health Perspectives


BACKGROUND: Toxicogenomics experiments often reveal thousands of transcript alterations that are related to multiple processes, making it difficult to identify key gene changes that are related to the toxicity of interest.

OBJECTIVES: The objective of this study was to compare gene expression changes in a nontarget tissue to the target tissue for toxicity to help identify toxicity-related genes.

METHODS: Male rats were given the hepatotoxicant methapyrilene at two dose levels, with livers and kidneys removed 24 hr after one, three, and seven doses for gene expression analysis. To identify gene changes likely to be related to toxicity, we analyzed genes on the basis of their temporal pattern of change using a program developed at the National Institute of Environmental Health Sciences, termed "EPIG" (extracting gene expression patterns and identifying co-expressed genes).

RESULTS: High-dose methapyrilene elicited hepatic damage that increased in severity with the number of doses, whereas no treatment-related lesions were observed in the kidney. High-dose methapyrilene elicited thousands of gene changes in the liver at each time point, whereas many fewer gene changes were observed in the kidney. EPIG analysis identified patterns of gene expression correlated to the observed toxicity, including genes associated with endoplasmic reticulum stress and the unfolded protein response.

CONCLUSIONS: By factoring in dose level, number of doses, and tissue into the analysis of gene expression elicited by methapyrilene, we were able to identify genes likely to not be implicated in toxicity, thereby allowing us to focus on a subset of genes to identify toxicity-related processes.

KEY WORDS: DNA microarray, gene expression, hepatotoxicity, liver, methapyrilene, toxicogenomics. Environ Health Perspect 115:572-578 (2007). doi:10.1289/ehp.9396 available via http://dx.doi.org/ [Online 17 January 2007]

**********

The advent of DNA microarray technology has spurred the recent growth of toxicogenomics studies [reviewed in Waters and Fostel (2004)]. By measuring changes in gene expression after toxicant exposure on a genomewide scale, investigators can attempt to identify genes or pathways involved in the mechanism of toxicity for that particular toxicant. However, because of the nature of global gene expression profiling, many of the genes found to be differentially expressed may not be related to toxicity. For example, some genes may change because of altered feeding schedules or diurnal rhythms (Boorman et al. 2005; Kita et al. 2002), whereas other gene changes may be related to the pharmacology but not toxicology of the administered substance. Careful design of toxicogenomics studies can reduce the complexities of analyzing gene expression data, such as using time-matched controls to remove those genes for which expression values change with diurnal rhythms. In addition, using different doses in toxicogenomics studies, ranging from pharmacologic/nontoxic to minimally toxic to highly toxic, can often identify genes that are responding to the pharmacologic properties of the administered toxicant.

Methapyrilene, an antihistaminic compound removed from the U.S. market after it was found to lead to the development of hepatic cancers in rats (Lijinsky et al. 1980), has been the focus of several toxicogenomics studies (Beekman et al. 2006; Hamadeh et al. 2002; Waring et al. 2004). The Hamadeh et al. and Waring et al. studies examined hepatic gene expression in rats treated from 1 to 7 days with methapyrilene at doses of 10 mg/kg and 100 mg/kg, whereas the Beekman et al. study examined expression changes in hepatocytes exposed in vitro to methapyrilene. The Hamadeh et al. study examined hepatic gene expression to try to correlate gene expression changes with alterations in histopathology after methapyrilene treatment to identify genes involved in methapyrilene-mediated hepatotoxicity (Hamadeh et al. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Identification of Genes Implicated in Methapyrilene-Induced Hepatotoxicity by Comparing Differential Gene Expression in Target and Nontarget Tissue
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.