Coarse Particulate Matter (P[M.Sub.2.5-10]) Affects Heart Rate Variability, Blood Lipids, and Circulating Eosinophils in Adults with Asthma

By Yeatts, Karin; Svendsen, Erik et al. | Environmental Health Perspectives, May 2007 | Go to article overview
Save to active project

Coarse Particulate Matter (P[M.Sub.2.5-10]) Affects Heart Rate Variability, Blood Lipids, and Circulating Eosinophils in Adults with Asthma


Yeatts, Karin, Svendsen, Erik, Creason, John, Alexis, Neil, Herbst, Margaret, Scott, James, Kupper, Lawrence, Williams, Ronald, Neas, Lucas, Cascio, Wayne, Devlin, Robert B., Peden, David B., Environmental Health Perspectives


INTRODUCTION: We investigated whether markers of airway and systemic inflammation, as well as heart rate variability (HRV) in asthmatics, change in response to fluctuations in ambient particulate matter (PM) in the coarse [PM with aerodynamic diameter 2.5-10 [micro]m (P[M.sub.2.5-10])] and fine (P[M.sub.2.5]) size range.

METHODS: Twelve adult asthmatics, living within a 30-mile radius of an atmospheric monitoring site in Chapel Hill, North Carolina, were followed over a 12-week period. Daily P[M.sub.2.5-10] and P[M.sub.2.5] concentrations were measured separately for each 24-hr period. Each subject had nine clinic visits, at which spirometric measures and peripheral blood samples for analysis of lipids, inflammatory cells, and coagulation-associated proteins were obtained. We also assessed HRV [SDNN24HR (standard deviation of all normal-to-normal intervals in a 24-hr recording), ASDNN5 (mean of the standard deviation in all 5-min segments of a 24-hr recording)] with four consecutive 24-hr ambulatory electrocardiogram measurements. Linear mixed models with a spatial covariance matrix structure and a 1-day lag were used to assess potential associations between PM levels and cardiopulmonary end points.

RESULTS: For a 1-[micro]g/[m.sup.3] increase in coarse PM, SDNN24HR, and ASDNN5 decreased 3.36% (p = 0.02), and 0.77%, (p = 0.05) respectively. With a 1-[micro]g/[m.sup.3] increase in coarse PM, circulating eosinophils increased 0.16% (p = 0.01), triglycerides increased 4.8% (p = 0.02), and very low-density lipoprotein increased 1.15% (p = 0.01). No significant associations were found with fine PM, and none with lung function.

CONCLUSION: These data suggest that small temporal increases in ambient coarse PM are sufficient to affect important cardiopulmonary and lipid parameters in adults with asthma. Coarse PM may have underappreciated health effects in susceptible populations.

KEY WORDS: asthma, coarse PM, heart rate variability, inflammatory markers, lipids, systemic inflammation. Environ Health Perspect 115:709-714 (2007). doi:10.1289/ehp.9499 available via http://dx.doi.org/ [Online 18 January 2007]

**********

In a recent review article of the health effects of coarse airborne particles on health, Brunekreef and Forsberg (2005) call for special consideration in studying and regulating coarse particulate matter [PM with aerodynamic diameter 2.5-10 [micro]m (P[M.sub.2.5-10])] separately from fine particulate matter (P[M.sub.2.5]). Epidemiologic evidence indicates that coarse PM had as strong a short-term effect (or stronger) as fine PM on asthma, chronic obstructive pulmonary disease (COPD), cardiac, and respiratory hospital admissions (Brunekreef and Forsberg 2005; Burnett et al. 1997, 1999; Chen et al. 2004; Sheppard et al. 1999). There is a growing body of work examining the mechanisms of effect of fine PM on heart rate variability (HRV) and systemic inflammation in susceptible populations such as the elderly, individuals with COPD, and individuals with recent myocardial infarction, hypertension, diabetes, or ischemic heart disease (Chuang et al. 2005; Liao et al. 1999; O'Neill et al. 2005; Park et al. 2005; Sullivan et al. 2005; Wheeler et al. 2006). However, few if any studies have examined potential mechanisms of effect of coarse PM to explain the epidemiologic associations between increased mortality/morbidity and exposure to ambient coarse PM.

Coarse PM can be distinguished from other particulate sizes by the content of bioactive microbial products. Becker et al. have reported that coarse PM activates macrophages and monocytes in vitro in a toll-like receptor (TLR)2- and TLR4-dependent fashion, with a significant fraction of this biologic activity being ascribed to endotoxin (Becker et al. 2002; Soukup and Becker 2001). Alexis et al. (2006) recently showed that in healthy individuals, endotoxin on inhaled coarse PM elicits innate immune responses in vivo on airway macrophages.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Coarse Particulate Matter (P[M.Sub.2.5-10]) Affects Heart Rate Variability, Blood Lipids, and Circulating Eosinophils in Adults with Asthma
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.