The Many Faces of Inductive Teaching and Learning: This Study Examines the Effectiveness and Implementation of Different Inductive Teaching Methods, Including Inquiry-Based Learning, Problem-Based Learning, Project-Based Learning, Case-Based Teaching, Discovery Learning, and Just-in-Time Teaching

By Prince, Michael; Felder, Richard | Journal of College Science Teaching, March-April 2007 | Go to article overview

The Many Faces of Inductive Teaching and Learning: This Study Examines the Effectiveness and Implementation of Different Inductive Teaching Methods, Including Inquiry-Based Learning, Problem-Based Learning, Project-Based Learning, Case-Based Teaching, Discovery Learning, and Just-in-Time Teaching


Prince, Michael, Felder, Richard, Journal of College Science Teaching


[ILLUSTRATION OMITTED]

Science courses are traditionally taught deductively. The instructor first teaches students relevant theory and mathematical models, then moves on to textbook exercises, and eventually--maybe--gets to real-world applications. Often the only motivation students have to learn the material, beyond grades, is the vague promise that it will be important later in the curriculum or in their careers. Failure to connect course content to the real world has repeatedly been shown to contribute to students leaving the sciences (Seymour and Hewitt 1997; Kardash and Wallace 2001).

A better way to motivate students is inductive teaching, in which the instructor begins by presenting students with a specific challenge, such as experimental data to interpret, a case study to analyze, or a complex real-world problem to solve. Students grappling with these challenges quickly recognize the need for facts, skills, and conceptual understanding, at which point the teacher provides instruction or helps students learn on their own. Bransford, Brown, and Cocking (2000) survey extensive neurological and psychological research that provides strong support for inductive teaching methods. The literature also demonstrates that inductive methods encourage students to adopt a deep approach to learning (Ramsden 2003; Norman and Schmidt 1992; Coles 1985) and that the challenges provided by inductive methods serve as precursors to intellectual development (Felder and Brent 2004).

Inductive teaching methods come in many forms, including discovery learning, inquiry-based learning, problem-based learning, project-based learning, case-based teaching, and just-in-time teaching. Few studies have examined these methods as a group. Prince and Felder (2006) provide an extensive analysis of the conceptual frameworks and research bases for inductive teaching, review applications of inductive methods in engineering education, and state the roles of other student-centered approaches, such as active and cooperative learning, in inductive teaching. This paper briefly reviews the distinguishing features of the principal inductive methods, describes illustrative applications in the sciences, discusses practical issues of implementation, and suggests resources for instructors who wish to use one or more inductive methods in their own teaching.

Inductive teaching methods

What inductive methods have in common is that students are presented with a challenge and then learn what they need to know to address the challenge. The methods differ in the nature and scope of the challenge and in the amount of guidance students receive from their instructor as they attempt to meet the challenge.

Inquiry-based learning

In inquiry-based learning (also known as inquiry-guided learning or guided inquiry), students are presented with a challenge (such as a question to be answered, an observation or data set to be interpreted, or a hypothesis to be tested) and accomplish the desired learning in the process of responding to that challenge. As with all inductive methods, the information needed to address the challenge would not have been previously covered explicitly in lectures or readings, although it would normally build on previously known material. Inquiry has frequently been found to be more effective than traditional science instruction at improving academic achievement and the development of thinking, problem-solving, and laboratory skills (Smith 1996; Haury 1993; McReary, Golde, and Koeske 2006; Shymansky, Hedges, and Woodworth 1990; Rubin 1996; Oliver-Hoyo and Allen 2005; Oliver-Hoyo et al. 2004). Colburn (2006) recommends focusing inquiry-based activities around questions that call for experimental investigation, involve materials and situations somewhat familiar to students, and pose a sufficient level of challenge to promote skill development.

Inquiry-based methods have been used in many different disciplines, including physics (Fencl and Scheel 2005; McDermott 1995; Thacker et al. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

The Many Faces of Inductive Teaching and Learning: This Study Examines the Effectiveness and Implementation of Different Inductive Teaching Methods, Including Inquiry-Based Learning, Problem-Based Learning, Project-Based Learning, Case-Based Teaching, Discovery Learning, and Just-in-Time Teaching
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.