Teaching and Guiding Today's Scientists: The Crucial Role of Liberal Arts Colleges in Educating the Next Generation of Scientists

By Strassburger, John | University Business, February 2008 | Go to article overview

Teaching and Guiding Today's Scientists: The Crucial Role of Liberal Arts Colleges in Educating the Next Generation of Scientists


Strassburger, John, University Business


CHANGES IN THE WAY SCIENTISTS work are making not just science education but scientific research at liberal arts colleges more important than ever. More "all-star" graduate students consider teaching careers in liberal arts colleges. A careful examination of what is going on should inform prospective students and funding agencies alike.

Liberal arts colleges have long played a far more important role in the production of the nation's scientists than their enrollments have suggested. This has been known at least since the 1980s. In the April 2007 issue of University Business, Richard Ekman, president of The Council of Independent Colleges, updated the case in a compelling manner.

Ekman's data are clear: It is not just a few elite liberal arts colleges that are essential to the nation's supply of scientists; almost all are. To cite just one example, Oberlin College (Ohio), with one-tenth the undergraduate enrollment of the University of Wisconsin-Madison, produced ten physics majors who went on to earn doctorates between 2001 and 2004, while UW-Madison produced only 19.

The transformation of modern scientific research holds the promise of increasing the role of these colleges. In "The Dawn of Networked Science," in the September 7, 2007, Chronicle of Higher Education, Diana Rhoten described the specific impact the internet is having on scientific research. For anyone watching what is going on in scientific laboratories anywhere, her case is both apt and descriptive of further changes to come.

Rhoten acknowledges what physicist Alvin Weinberg once labeled "Big Science"--the clustering of scientists and millions of dollars of equipment not just in a few countries or regions but at just a few sites in those regions. Such examples of Big Science as the Manhattan Project are familiar to all of us.

[ILLUSTRATION OMITTED]

More recently, however, we have seen the way in which collaboration can now transcend regional and even national boundaries. The most famous example of what Rhoten calls "Team Science" is undoubtedly the Human Genome Project. Hundreds of scientists working in six countries unraveled the human genome far more rapidly than anyone had predicted possible. This worldwide collaboration heralded a new degree of interaction.

NETWORKED SCIENCE: RESEARCH ANYWHERE

For Rhoten, the most telling stage, "Networked Science," is in its infancy. Now the sharing of data can be instantaneous, or it can be pooled and parsed out again to hundreds if not thousands of scientists around the world.

There are examples everywhere, and it is easy for most of us to find them on our own campuses. Three involve my colleagues at Ursinus College (Pa.). One faculty member and his undergraduate researchers are carrying out data analysis on nuclear structure based on experiments they and others conducted at the National Superconducting Laboratory more than a thousand miles away.

Others are using neuroimaging and analyzing cognitive data on campus to help manage the consequences of a genetic deletion in children being treated at a major children's hospital miles away. And now people are sharing, almost instantaneously, wonderful high-resolution images of Antarctic core samples for comparison and analysis, not just on the Ursinus campus but in labs around the globe. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Teaching and Guiding Today's Scientists: The Crucial Role of Liberal Arts Colleges in Educating the Next Generation of Scientists
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.