Engineering the Climate: What If It's Not Possible to Cut Greenhouse Gas Emissions Enough to Thwart Global Warming? Samuel Thernstrom Is Investigating a Potential Solution-Geoengineering

By Thernstrom, Samuel | The American (Washington, DC), November-December 2008 | Go to article overview

Engineering the Climate: What If It's Not Possible to Cut Greenhouse Gas Emissions Enough to Thwart Global Warming? Samuel Thernstrom Is Investigating a Potential Solution-Geoengineering


Thernstrom, Samuel, The American (Washington, DC)


Q What is geoengineering?

A Many scientists and policymakers have become increasingly pessimistic about the prospects in the near future of sharply reducing global greenhouse gas emissions, so scholars have begun to consider whether there might be other ways to counteract global warming, particularly if it proves to be severe. "Geoengineering" is the most common term for efforts to intentionally change the Earth's environment in ways that would compensate for the effects of elevated greenhouse gas concentrations. "Climate engineering" might be a better term for this concept.

[ILLUSTRATION OMITTED]

The basic idea is quite simple. The Earth is warmed by two forces: solar radiation, which enters the atmosphere, and the greenhouse gases that trap it there. There are two possible ways to cool the planet, therefore: reduce greenhouse gases or reduce the amount of solar radiation that reaches the Earth's surface. If we can't cut greenhouse gas emissions quickly enough, it makes sense to think about the other source of warming, solar radiation. Reflecting just a small fraction of the incoming sunlight--roughly 2 percent--would be enough to offset the warming effects that we are likely to experience in this century.

Q Could we really do that? How do you know it would work?

A It might be premature to say that we know it would work--but the evidence we have so far indicates that it would. The National Academy of Sciences, NASA, the Department of Energy, and several leading academic scientists have studied geoengineering and concluded that it could be (as the National Academy put it) "feasible, economical, and capable."

The science is still in its infancy, and will remain so until there are field experiments to test the theories and models that scientists are working with today. But Mother Nature has conducted some dramatic experiments that provide a relatively crude but clearly effective demonstration of the basic concept. The 1991 eruption of Mt. Pinatubo in the Philippines, for example, cooled the planet for at least a year by roughly half a degree Celsius. The question for scientists and engineers is how we could artificially reproduce that effect.

Q What kinds of geoengineering projects could be considered?

A There are a few different ideas, but the simplest and most commonly discussed one among scientists is mimicking the effects of a Mt. Pinatubo-type volcanic eruption by distributing some kind of ultra-fine particles, such as sulfur, in the upper atmosphere. The particles would block enough incoming sunlight to cool the planet and counteract the effects of warming. Such a system could be tested and initially deployed over the Arctic. If results were promising, it could be expanded; if there were undesirable side-effects, the particles would quickly fall to earth once the system was discontinued.

An intriguing idea has been proposed by two British scientists, John Latham, an atmospheric physicist, and Stephen Salter, an engineer. Rather than look to volcanoes as the cooling force to be emulated, they noted that low-altitude marine stratocumuli clouds also reflect sunlight. The reflective abilities of these clouds, which cover about 25 percent of the world's oceans, could he enhanced by a feet of ships that would spray a fine mist of seawater into the air. Latham and Salter calculate that increasing the reflectivity of those clouds by about 10 percent would be enough to counteract the warming effect of elevated greenhouse gas concentrations.

A much more low-tech way of reflecting some sunlight would be to paint the roofs of buildings white. A provocative new study from three scientists in California calculates that painting 1,000 square feet of roof white would reflect enough sunlight to counteract the warming effects of 10 tons of carbon dioxide. Light-colored pavement can also reflect sunlight. If implemented widely throughout the tropical and temperate regions of the world, this study calculates that enough sunlight could be reflected to offset 44 gigatons of C[O. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Engineering the Climate: What If It's Not Possible to Cut Greenhouse Gas Emissions Enough to Thwart Global Warming? Samuel Thernstrom Is Investigating a Potential Solution-Geoengineering
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.