The Limits of Two-Year Bioassay Exposure Regimens for Identifying Chemical Carcinogens

By Huff, James; Jacobson, Michael F. et al. | Environmental Health Perspectives, November 2008 | Go to article overview

The Limits of Two-Year Bioassay Exposure Regimens for Identifying Chemical Carcinogens


Huff, James, Jacobson, Michael F., Davis, Devra Lee, Environmental Health Perspectives


BACKGROUND: Chemical carcinogenesis bioassays in animals have long been recognized and accepted as valid predictors of potential cancer hazards to humans. Most rodent bioassays begin several weeks after birth and expose animals to chemicals or other substances, including workplace and environmental pollutants, for 2 years. New findings indicate the need to extend the timing and duration of exposures used in the rodent bioassay.

OBJECTIVES: In this Commentary, we propose that the sensitivity of chemical carcinogenesis bioassays would be enhanced by exposing rodents beginning in utero and continuing for 30 months (130 weeks) or until their natural deaths at up to about 3 years.

DISCUSSION: Studies of three chemicals of different structures and uses--aspartame, cadmium, and toluene--suggest that exposing experimental animals in utero and continuing exposure for 30 months or until their natural deaths increase the sensitivity of bioassays, avoid false-negative results, and strengthen the value and validity of results for regulatory agencies.

CONCLUSIONS: Government agencies, drug companies, and the chemical industry should conduct and compare the results of 2-year bioassays of known carcinogens or chemicals for which there is equivocal evidence of carcinogenicity with longer-term studies, with and without in utero exposure. If studies longer than 2 years and/or with in utero exposure are found to better identify potential human carcinogens, then regulatory agencies should promptly revise their testing guidelines, which were established in the 1960s and early 1970s. Changing the timing and dosing of the animal bioassay would enhance protection of workers and consumers who are exposed to potentially dangerous workplace or home contaminants, pollutants, drugs, food additives, and other chemicals throughout their lives.

KEY WORDS: animal cancer tests, aspartame, bioassay designs, bisphenol A. cadmium, carcinogenicity, chemical carcinogens, genistein, toluene, toxicology. Environ Health Perspect 116:1439-1442 (2008). doi: 10.1289/ehp.10716 available via http://dx.doi.org/ [Online 30 June 2008]

Additional research on molecular end points and other biological approaches has been recommended for evaluating the toxicity of chemicals (Committee on Toxicity Testing and Assessment of Environmental Agents 2007). However, currently and for the foreseeable future, short-and long-term bioassays represent the most reliable way to evaluate and profile the toxicology of chemicals to which humans are exposed, especially for predicting and preventing long-term adverse exposure effects, including cancer. We focus here on two potentially important means of increasing the sensitivity of carcinogenesis bioassays for identifying potentially carcinogenic food additives, pesticides, workplace chemicals and contaminants, pharmaceuticals, industrial chemicals, consumer products, and other natural and synthetic chemicals.

Chemical carcinogenesis bioassays in animals have long been recognized and accepted as valid predictors of potential cancer hazards to humans (Huff 1999.2002; Rall 2000; Tomatis 2006; Tomatis and Huff 2002). The relevance of experimental bioassays to humans rests on four well-accepted observations: a) Experimental animals and humans are mammals sharing many basic genetic, pharmacologic, toxicologic, and carcinogenic responses; b) findings from independently conducted bioassays on the same chemicals are consistent; c) all known human carcinogens that have been tested adequately are also carcinogenic in animals and, almost without exception, share identical target sites; and d) nearly one-third of human carcinogens were first discovered to induce cancer in animals (e.g., 1,3-butadiene, diethylstilbestrol, dioxins, ethylene oxide, 2-naphthylamine, formaldehyde, vinyl chloride), although most of these were not regulated until human evidence mounted. Thus, in light of the fact that animal bioassays predict human cancer risks, conducting more sensitive tests would better protect the public, and especially workers, from involuntary exposure to animal carcinogens. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

The Limits of Two-Year Bioassay Exposure Regimens for Identifying Chemical Carcinogens
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.