The Development of Students Geometrical Thinking through Transformational Processes and Interaction Techniques in a Dynamic Geometry Environment

By Patsiomitou, Stavroula | Issues in Informing Science & Information Technology, Annual 2008 | Go to article overview

The Development of Students Geometrical Thinking through Transformational Processes and Interaction Techniques in a Dynamic Geometry Environment


Patsiomitou, Stavroula, Issues in Informing Science & Information Technology


Introduction

Applying Comenius' rationale that "learning has been becoming more and more an activity", Freudenthal (1971, p. 415) adds that he dismisses the question "whether people learn better by active building up the subject than by passive reception of a ready made matter." This idea accords with the constructivist hypothesis as Mariotti (2002) declares "that learning results from a process of active adaptation of the learner to his /her environment, rather than a passive reception of information or instruction". On the other hand Nardi (1996, p.35) writes that "it is not possible to fully understand how people learn or work, if the unit of study is the unaided individual with no access to other people or to artefacts for accomplishing the task at hand". From this perspective, we consider the computer to constitute a fundamental artefact with a crucial role to play in learning processes. Computers, according to Pea (1985, p.167), are "reorganizers of mental functioning". The technological environment of the computer provides cognitive tools through which the user's communicative expression can be improved. Papert (1980) writes that children need tools to think with; a fundamental question concerns the ways in, and procedures through, which computers could be used effectively in education as cognitive tools to promote and reinforce cognitive processes, and act catalytically upon the quality of knowledge. According to Roschelle, Pea, Hoadley, Gordin, & Means (2000, p.79), research into cognitive processes has shown that learning is most effective when four core conditions hold: (1) active engagement, (2) participation in groups, (3) frequent interaction and feedback, and (4) connections to real world contexts"; all supported through effective uses of technology.

Dynamic geometry systems have been described as computational environments that embody some subdomain of mathematics or science, generally using linked symbolic and graphical representations. Through computers' environment and dynamic geometry environments especially can allow students to explore the various solution paths individually and in small groups in which they make decisions and receive feedback on their ideas and strategies.

Mental schemes are developed by the students during problematic situations. Cobb, Yackel, and Wood (1992, p.4) suggest that "students construct mental representations that correctly or accurately mirror mathematical relationships located outside the mind in instructional representations".

Consequently: Which is the role of the computer in students constructing mental schemes? How can the computer contribute to the configuration of cognitive units, and thus operate as a reference point for organizing, pursuing, and retrieving information, and thus facilitating the reusing and handling of the schemes in a wide range of situations? How can the construction of rigorous proofs be affected by dynamic geometry systems? What impact can dynamic geometry systems have a student's van Hiele level?

Introducing new representational infrastructures (Kaput, Noss, & Hoyles, 2002, p.2) such as dynamic geometry systems in the teaching and learning process makes it necessary to investigate the way in which students create mathematics and support reasoning. The focal point of interest, and subject under analysis, are the students' answers and the way in which they represent and verbally formulate concrete and abstract situations in problems.The present study a) focuses on the insightful data provided by a comparison of the experimental and control groups during the research process b) reports and describes a study undertaken to investigate the benefits of using (semi) pre-designed sketches relating to rigorous proof at the secondary school level; van Hiele levels are used as descriptor for the analysis.

The Role of the Dynamic Geometry Enviroment in Problem Posing

Writing in "Crossroads in mathematics: Standards for introductory college mathematics before calculus" Daniel Alexander offers the following reflections on the value of students learning geometry (quoted in Larew, 1999): "Geometry is a vehicle that provides much of the basic core of knowledge that the student of mathematics should possess . …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

The Development of Students Geometrical Thinking through Transformational Processes and Interaction Techniques in a Dynamic Geometry Environment
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.