The Sustainability Transition: Meeting Basic Human Needs without Degrading the Planet's Vital Systems Will Require an Ambitious, Interdisciplinary, and Solution-Oriented Research Program

By Matson, Pamela | Issues in Science and Technology, Summer 2009 | Go to article overview

The Sustainability Transition: Meeting Basic Human Needs without Degrading the Planet's Vital Systems Will Require an Ambitious, Interdisciplinary, and Solution-Oriented Research Program


Matson, Pamela, Issues in Science and Technology


One of the greatest challenges confronting humanity in the 21st century is sustainability: how to meet the basic needs of people for food, energy, water, and shelter without degrading the planet's life support infrastructure, its atmosphere and water resources, the climate system, and species and ecosystems on land and in the oceans on which we and future generations will rely. Although the precise definition of sustainability continues to be discussed and debated, general agreement has emerged about what areas deserve most attention, and actions are being taken in all of them. Although we won't meet the sustainability goal overnight, humanity is beginning to make decisions based on criteria that show concern both for people and for our life support systems. We are embarked on a transition toward sustainability.

With a still-growing human population, rapidly increasing consumption, and ever-increasing stresses on the environmental services on which we rely, however, this transition needs to accelerate. The engagement of the science and technology (S&T) community will be essential, though not sufficient, for achieving that acceleration. Like the fields of medical science and agricultural science, the emerging field of sustainability science is not defined by disciplines but rather by problems to be addressed and solved. It encompasses and draws on elements of the biophysical and social sciences, engineering, and medicine, as well as the humanities, and is often multi- and interdisciplinary in effort. The substantive focus of sustainability science is on the complex dynamics of the coupled human/environment system. The field reaches out to embrace relevant scholarship on the fundamental character of interactions among humans, their technologies, and the environment, and on the utilization of that knowledge by decisionmakers to address urgent problems of economic development and environmental and resource conservation.

Sustainability research is appearing in scientific journals and influencing some real-world decisions, and the field is now in need of a well-thought-through plan that engages the broad research, educational, and funding communities. Although sustainability, like all long-term societal challenges, will ultimately benefit from an S&T approach that "lets a thousand flowers bloom," such an approach is not enough. We need solution-oriented, use-inspired R&D for a sustainability transition, and we need it fast, so we need a clear plan for research. And although literally every discipline can and needs to contribute gems of scientific and technological knowledge to help meet the sustainability challenge, none can make sufficient progress working alone; thus, we need concerted efforts to bring those disciplines together to work on integrative challenges.

A research plan

The need for integrative, problem-focused research becomes clear when addressing some of the grand challenges of sustainability. Consider energy. The vast majority of the world's energy is provided by fossil fuels, and demand for energy is rapidly increasing in the developing nations. Much attention has been paid to the "end of oil" and the security concerns about increasing worldwide competition for oil and gas, but the most critical and immediate sustainability challenge is the energy system's effect on climate and on air and water pollution. Research endeavors that focus simply on new energy resources are critical, but from a sustainability standpoint, they're just part of the puzzle. Research must focus at the interface of the technology/environment/social system to develop energy sources that reduce environmental consequences and are broadly implementable and available to the world's poorest people. The challenge is to understand not just what new technologies are necessary, but also how to implement them in a way that avoids unintended consequences for people and the planet. Our recent experience with biofuels from food crops shows what can happen when we focus too narrowly on a specific energy goal in isolation from its interaction with food production, water and air pollution, trade, climate, and other environmental and social needs. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

The Sustainability Transition: Meeting Basic Human Needs without Degrading the Planet's Vital Systems Will Require an Ambitious, Interdisciplinary, and Solution-Oriented Research Program
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.