Introduction and Preliminary Evaluation of the Tongue Drive System: Wireless Tongue-Operated Assistive Technology for People with Little or No Upper-Limb Function

By Huo, Xueliang; Wang, Jia et al. | Journal of Rehabilitation Research & Development, July 2008 | Go to article overview

Introduction and Preliminary Evaluation of the Tongue Drive System: Wireless Tongue-Operated Assistive Technology for People with Little or No Upper-Limb Function


Huo, Xueliang, Wang, Jia, Ghovanloo, Maysam, Journal of Rehabilitation Research & Development


INTRODUCTION

Persons with disabilities as a result of various causes, from traumatic brain injury and spinal cord injury (SCI) to amyotrophic lateral sclerosis and stroke, generally find performing everyday tasks extremely difficult without continuous help [1-3]. In the United States alone, an estimated 11,000 new cases of SCI are added every year to a population of a quarter of a million as a result of acts of violence, falls, and accidents [2]. Fifty-five percent of SCI patients are between 16 and 30 years old and will need lifelong special care that currently costs about $4 billion each year [3]. With the help of assistive technologies (ATs), people with severe disabilities can lead self-supportive, independent, and high-quality lives. ATs can not only ease these individuals' need to receive continuous help, thus releasing a family member or dedicated caregiver and reducing their healthcare costs, but may also provide them with opportunities to return to full, active, and productive lives within society by helping them to be employed.

Although many devices are available to assist people with lower levels of disabilities, people who have minimal or no movement ability (e.g., individuals with tetraplegia) and who probably need assistance the most have very limited options. Even the existing ATs for this group of people have limitations such that only a small number have become popular among their intended users. The sip-n-puff switch, for example, is a simple, easy-to-learn, and relatively low-cost AT. However, it is slow, cumbersome, and inflexible, with only 2 to ~4 direct commands [4]. * It also requires its users to have airflow and diaphragm control, which patients who use ventilators do not have.

Another group of ATs tracks eye movements from corneal reflection and pupil position [5-6]. Electrooculo-graphic potentials have also been used to detect eye movements [7-8]. An inherent drawback of these methods is that they interfere with the users' vision by requiring extra eye movements for eye control. In many cases, whether the user is issuing a command or simply gazing at an object is not clear; this is also known as the "Midas touch" problem [9]. Head pointers, another group of ATs, require a certain level of head movement ability that may not exist in many patients with high-level SCI [10]. These devices also require the user to always be in a sitting position while using them.

Some ATs, such as electroencephalogram (EEG) systems, directly use brain waves [11]. These devices require user concentration, a long procedure for electrode attachment, and daily removal. EEG systems are also prone to external interference and motion artifacts due to the small magnitude of the EEG signals. More recently, invasive brain-computer interfaces (BCIs) have emerged based on subdural electrocorticograms or intracortical neural recording [12-15]. These procedures are highly invasive, costly, and involve risks associated with brain surgeries. Finally, voice-activated ATs are quite popular for computer access and operate well in quiet settings. However, they are unreliable in noisy and outdoor environments. They also require diaphragm control, similar to the sip-n-puff, and functional vocal cords [10].

The tongue and mouth occupy an amount of sensory and motor cortex in the human brain that rivals that of the fingers and the hand. Hence, they are inherently capable of sophisticated motor control and manipulation tasks with many degrees of freedom [16]. The tongue is connected to the brain by the hypoglossal nerve, which generally escapes severe damage in SCI. The tongue muscle is similar to the heart muscle in that it does not fatigue easily [17]. Further, the tongue is noninvasively accessible and not influenced by the position of the rest of the body, which can be adjusted for maximum comfort.

The just-named reasons have resulted in the development of a few tongue-operated ATs, such as the Tongue Touch Keypad (TTK). …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Introduction and Preliminary Evaluation of the Tongue Drive System: Wireless Tongue-Operated Assistive Technology for People with Little or No Upper-Limb Function
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.