Dynamic Monitoring of Forearm Muscles Using One-Dimensional Sonomyography System

By Guo, Jing-Yi; Zheng, Yong-Ping et al. | Journal of Rehabilitation Research & Development, January 2008 | Go to article overview

Dynamic Monitoring of Forearm Muscles Using One-Dimensional Sonomyography System


Guo, Jing-Yi, Zheng, Yong-Ping, Huang, Qing-Hua, Chen, Xin, Journal of Rehabilitation Research & Development


INTRODUCTION

Electromyography (EMG), an electrical signal collected by electrodes during muscle contractions, represents the bioelectrical properties of skeletal muscles and demonstrates the physiological processes of muscle contraction. It has been widely used for evaluation of muscle function in the areas of biomechanics and kinesiology [1-2], muscle pathology [3], muscle fatigue [4], and prosthetic device control [5]. The root mean square (rms) magnitude and median frequency are commonly used to describe the time-domain and frequency-domain information of the EMG signal, respectively [6].

EMG is a complex signal; it is the summation of individual motor unit (MU) action potential trains generated by irregular discharges of active MUs during muscle activation. It can be influenced by many factors, e.g., muscle cross talk [7] and interelectrode distance [8]. During the past decade, many efforts have been directed at developing different algorithms to process EMG signals, including classification of EMG using artificial network [9], fuzzy logic [10], and pattern recognition (multichannel EMG [11]) and decomposition of EMG signals with the Bayesian method [12]. However, in addition to the complexity of the required signal processing methods, use of EMG for noninvasively measuring deep muscles is difficult because the deep muscle EMG signal may be more attenuated and/or mixed with the superficial muscle EMG signal by the time it reaches the skin surface.

Researchers have been searching for alternative signals that can better assess muscle function, including mechanomyography (MMG), electroencephalography [13-14], myokinemetric (MK) signals [15], and magnetic resonance imaging [16]. For example, MMG is the sound generated by a muscle during its contraction and is used as a measure of mechanical muscle changes during contraction [17]. Recently, it has been widely analyzed along with EMG for different purposes [18-20], such as control of a prosthesis with 2 degrees of freedom [21]. However, MMG can be affected by many factors, such as muscle temperature [22], skinfold thickness [23], and external mechanical noise [24]. These factors, together with challenges in sensor attachment and low-frequency noise elimination, can affect the stability and reliability of the MMG signal, thus limiting its application in fatigue assessment and prosthesis control. The MK signal represents the dimensional changes of muscle while it bulges during contraction and is detected with a Hall sensor [15]. Sensor attachment is also a challenge when collecting the MK signal.

Because it has the advantages of being stable, easy to use, nonionizing, and capable of recording activities from deep muscles without cross talk from adjacent muscles [25], ultrasonography has been used to detect muscle thickness changes [26-27], pennation angle [28-29], cross-sectional area [30-31], and muscle fascicle length [32-34] both in static and quasi-static conditions during the past decades. Since skeletal muscle architecture is closely correlated with its function [35], ultrasound parameters have been widely employed to characterize muscle activity [36-38], and the relationship between EMG and muscle architecture changes detected with ultrasound has been reported [39-40].

In a previous study, Zheng et al. used sonomyography (SMG) with B-mode ultrasound images to describe real-time muscle thickness changes during contraction [41]. A system was developed to record and analyze ultrasound images, force, joint angle, and surface EMG simultaneously. The system has been successfully used for the analysis of muscle fatigue, and the investigators found that muscle thickness increased during the fatigue process [42]. The correlation between EMG and SMG of muscles during isometric contraction has also been investigated [43].

Although the two-dimensional SMG signal from ultrasound images is capable of detecting continuous muscle thickness changes, A-mode ultrasound, with a more portable and compact transducer, should be a less expensive and more practical alternative for detecting muscle thickness changes during contraction. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Dynamic Monitoring of Forearm Muscles Using One-Dimensional Sonomyography System
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.