Another Human Genome Project: A Private Company's Plan Shocks the Genetics Community

By Travis, John | Science News, May 23, 1998 | Go to article overview
Save to active project

Another Human Genome Project: A Private Company's Plan Shocks the Genetics Community


Travis, John, Science News


Consider it modern biology's equivalent of the fabled race between the tortoise and the hare--except that the prizes at this finish line are the priceless secrets of the human body and the tortoise may not repeat its legendary victory.

In the role of tortoise is the international Human Genome Project, a $3 billion worldwide effort--funded by U.S. agencies such as the National Institutes of Health and the Department of Energy--to decipher the complete human genetic sequence by 2005. Playing the hare are J. Craig Venter, a maverick scientist with a knack for startling the genetics community, and Perkin-Elmer Corp. of Norwalk, Conn., the leading maker of automated DNA sequencing machines. With a pistol shot signaling the start of a scientific race that few people anticipated, Venter and Perkin-Elmer announced May 9 their intention of creating a new company whose goal is to unravel the human genome in just 3 years--and for a measly $200 million to $300 million.

"This is a private company paying to sequence the human genome and give it to the public," says Venter.

Knowing little about the new effort, many scientists, particularly officials overseeing the worldwide genome project, are still contemplating how to react. Some express skepticism about the strategy, known as whole-genome shotgun sequencing, that the as-yet-unnamed company has embraced. They are also concerned about what the company plans to do with the massive amount of genetics data it will generate and what access other scientists will have to it.

"What we're doing is to produce the complete human genome sequence to a very high accuracy and with nothing missing," says John Sulston, director of the Sanger Centre in Cambridge, England, which plans to sequence one-third of the human genome as part of the now 8-year-old worldwide effort. "I'm sure that the product they're going to produce will be of lower quality, and we consider it inadequate."

Supporters of the shotgun strategy respond that speed is of the essence. "The whole-genome shotgun approach would leave gaps and regions where the sequence is less certain, but I still think it's the best approach," says James L. Weber of the Marshfield (Wis.) Medical Research Foundation, who last year coauthored a paper arguing that the strategy should be applied to human DNA. "The greatest cost of sequencing the genome is the cost of not having the sequence. It's the cost of missed opportunity. Pharmacologists and biochemists need new targets for diabetes, obesity, epilepsy, asthma, etcetera in order to develop better treatments, and it can take 5 to 15 years to develop a new drug. These factors overwhelm concerns about incomplete information and imperfections."

Venter also dismisses criticisms of the shotgun strategy, arguing that the data produced by his new company will equal, if not surpass, that generated by the worldwide effort. "This is going to be an incredibly complete, incredibly accurate genome sequence," he says.

Venter has a record of backing up such forceful claims. While an investigator at NIH, he hit upon a technique to identify quickly most of the 50,000 to 80,000 genes in the human genome. The method used bits of single-stranded DNA, so-called expressed sequence tags (ESTs), which represent part of a gene's sequence, as lures to identify a gene's complete protein-coding sequence. NIH skepticism about the method prompted Venter to leave and establish the Institute for Genomic Research (TIGR) in Rockville, Md., where he pursued the project privately. He and other scientists have since used ESTs to identify an estimated 80 percent of all human genes.

The EST method ignores much of the genome, however, including the regulatory DNA sequences that control the protein-coding portion of a gene. Nor can ESTs identify every gene.

Consequently, ESTs can't provide all the useful information contained in the complete human genome--and sequencing full genomes happens to be another of Venter's talents.

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
Loading One moment ...
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited article

Another Human Genome Project: A Private Company's Plan Shocks the Genetics Community
Settings

Settings

Typeface
Text size Smaller Larger
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

While we understand printed pages are helpful to our users, this limitation is necessary to help protect our publishers' copyrighted material and prevent its unlawful distribution. We are sorry for any inconvenience.
Full screen

matching results for page

Cited passage

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

Cited passage

Welcome to the new Questia Reader

The Questia Reader has been updated to provide you with an even better online reading experience.  It is now 100% Responsive, which means you can read our books and articles on any sized device you wish.  All of your favorite tools like notes, highlights, and citations are still here, but the way you select text has been updated to be easier to use, especially on touchscreen devices.  Here's how:

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select.

OK, got it!

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

Already a member? Log in now.

Are you sure you want to delete this highlight?